
Apache UIMA™ - UIMA 3 User’s Guide
Apache UIMA™ Development Community

Version 3.6.1

The document is a manual for users of Apache UIMA, specifically focusing on
the new features introduced in version 3.

Copyright © 2006, 2021 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

License and Disclaimer

The ASF licenses this documentation to you under the Apache License, Version 2.0 (the "License");
you may not use this documentation except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents are
distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Trademarks

All terms mentioned in the text that are known to be trademarks or service marks have been
appropriately capitalized. Use of such terms in this book should not be regarded as affecting the
validity of the the trademark or service mark.

1

http://www.apache.org/licenses/LICENSE-2.0

UIMA 3 User's Guide
1. Overview of UIMA Version 3 . 5

1.1. What’s new in UIMA 3 . 5

1.2. Java 8 is required . 8

2. Backwards Compatibility . 9

2.1. JCas and non-JCas APIs . 9

2.1.1. Additional reserved names in the JCas generated classes. 9

2.2. Serialization forms . 9

2.2.1. Delta CAS Version 2 Binary deserialization not supported. 9

2.3. APIs for creating and modifying Feature Structures . 10

2.4. Preserving V2 ids, with low level CAS Api accessibility . 10

2.5. PEAR support. 12

2.6. toString() . 12

2.7. Logging configuration is somewhat different . 13

2.8. Type System sharing . 13

2.9. Some checks moved to native Java. 14

2.10. Some class hierarchies have been modified . 14

2.11. Enabling multiple versions of type systems to work with a single common JCas class 14

3. New and Extended APIs . 15

3.1. UIMA FSIndex and FSIterators improvements . 15

3.2. New Select API. 16

3.3. New custom Java objects in the CAS framework . 16

3.4. Built-in lists and arrays . 16

3.4.1. Built-in lists and arrays have common super classes / interfaces. 17

3.5. Many UIMA objects implement Stream or Collection . 17

3.6. Reorganized APIs . 17

3.7. Use of JCas Class to specify a UIMA type . 18

3.8. JCasGen changes . 18

3.8.1. JCas additional static fields. 18

3.9. Generics added . 18

3.10. Other changes . 18

4. SelectFS CAS data access. 20

4.1. Select’s use of the builder pattern . 20

4.2. Sources of Feature Structures . 21

4.2.1. Use of Type in selection of sources . 22

4.2.2. Sources and generic typing . 22

4.3. Selection and Ordering . 24

4.3.1. Boolean properties . 25

4.3.2. Configuration for any source . 25

2

4.3.3. Configuration for any index. 25

4.3.4. Configuration for sort-ordered indexes . 26

4.3.5. Following or Preceding . 27

4.3.6. Bounded sub-selection within an Annotation Index . 27

4.3.7. Variations in Bounded sub-selection within an Annotation Index. 28

4.3.8. Defaults for bounded selects . 29

4.4. Terminal Form actions . 30

4.4.1. Iterators. 31

4.4.2. Arrays and Lists. 31

4.4.3. Single Items . 31

4.4.4. Streams . 32

5. Annotation relation predicates. 33

6. Type discovery via SPI . 35

6.1. JCas class discovery . 35

6.2. Type system description discovery . 35

7. CAS-transported custom Java objects . 36

7.1. Tutorial example. 36

7.2. Additional semi-built-in UIMA Types for some common Java Objects . 39

7.2.1. FSArrayList . 39

7.2.2. IntegerArrayList . 39

7.2.3. FSHashSet and FSLinkedHashSet . 40

7.2.4. Int2FS Int to Feature Structure map. 40

7.3. Design for reuse . 40

8. Logging . 41

8.1. Logging Levels. 41

8.2. Context Data. 42

8.3. Markers used in UIMA Java core logging . 42

8.4. Defaults and Configuration . 42

8.4.1. Throttling logging from Annotators . 43

9. Migrating to UIMA Version 3 . 44

9.1. Migrating: the big picture . 44

9.2. How to migrate an existing UIMA pipeline to V3 . 44

9.3. Migrating JCas classes . 44

9.3.1. Running the migration tool . 46

Using Eclipse to run the migration tool . 46

Running from the command line . 47

Command line: Specifying input sources . 47

Command line: Specifying a classpath for the migration. 47

Handling duplicate definitions . 48

9.3.2. Understanding the reports . 48

9.3.3. Examples. 51

3

9.4. Consuming V3 Maven artifacts . 52

10. PEAR support . 53

10.1. JCas issues . 53

10.2. Custom Java Objects. 54

11. Migration aids . 55

11.1. Properties Table . 55

11.2. Trading off runtime checks for speed . 57

11.3. Reporting . 58

4

Chapter 1. Overview of UIMA Version 3
UIMA Version 3 adds significant new functionality for the Java SDK, while remaining backward
compatible with Version 2. Much of this new function is enabled by a shift in the internal details of
how Feature Structures are represented. In Version 3, these are represented internally as ordinary
Java objects, and subject to garbage collection.

In contrast, version 2 stored Feature Structure data in special internal arrays of ints and other data
types. Any Java object representation of Feature Structures in version 2 was merely forwarding
references to these internal data representations.

If JCas is being used in an application, the JCas classes must be migrated, but this can often be done
automatically. In Version 3, the JCas classes ending in "_Type" are no longer used, and the main JCas
class definitions are much simplified.

If an application doesn’t use JCas classes, then nothing need be done for migration. Otherwise, the
JCas classes can be migrated in several ways:

generating during build

If the project is built by Maven, it’s possible the JCas classes are built from the type descriptions,
using UIMA’s Maven JCasGen plugin. If so, you can just rebuild the project; the JCasGen plugin
for V3 generates the new JCas classes.

running the migration utility

This is the recommended way if you can’t regenerate the classes from the type descriptions.

This does the work of migrating and produces new versions of the JCas classes, which need to
replace the existing ones. It allows complex existing JCas classes to migrated, perhaps with
developer assistance as needed. Once done, the application has no migration startup cost.

The migration tool is capable of using existing source or compiled JCas classes as input, and can
migrate classes contained within Jars or PEARs.

regenerating the JCas classes using the JCasGen tool

The JCasGen tool (available as a Eclipse or Maven plugin, or a stand-alone application) generates
Version 3 JCas classes from the XML descriptors.

This is perfectly adequate for migrating non-customized JCas classes. When run from the UIMA
Eclipse plugin for editing XML component descriptors, it will attempt to merge customizations
with generated code. However, its approach is not as comprehensive as the migration tool,
which parses the Java source code.

Migration of JCas classes is the first step needed to start using UIMA version 3. See the later chapter
on migration for details on using the migration tool.

1.1. What’s new in UIMA 3
The major improvements in version 3 include:

5

Support for arbitrary Java objects, transportable in the CAS

Support is added to allow users to define additional UIMA Types whose JCas implementation
may include Java objects, with serialization and deserialization performed using normal CAS
transportable data. A following chapter on Custom Java Objects describes this new facility.

New UIMA semi-built-in types, built using the custom Java object support

The new support that allows custom serialization of arbitrary Java objects so they can be
transported in the CAS (above) is used to implement several new semi-built-in UIMA types.

FSArrayList

a Java ArrayList of Feature Structures. The JCas class implements the List API.

IntegerArrayList

a variable length int array. Supports OfInt iterators.

FSHashSet, FSLinkedHashSet

a Java HashSet or LinkedHashSet containing Feature Structures. This JCas class implements the
Set API.

Select framework for accessing Feature Structures

A new select framework provides a concise way to work with Feature Structure data stored in
the CAS or other collections. It is integrated with the Java 8 stream framework, while providing
additional capabilities supported by UIMA, such as the ability to move both forwards and
backwards while iterating, moving to specific positions, and doing various kinds of specialized
Annotation selection such as working with Annotations spanned by another annotation.

By default, when sorted iterators are set up by the select framework, they ignore typePriorities;
this addresses a need of many use cases, and makes operation when there are many annotations
spanning the same begin and end more reliable. Each select can specify to use typePriority as
part of the ordering when required.

This user’s guide has a chapter devoted to this new framework.

Elimination of ConcurrentModificationException while iterating over UIMA indexes

The index and iteration mechanisms are improved; it is now allowed to modify the indexes
while iterating over them (the iteration will be unaffected by the modification).

Note that the automatic index corruption avoidance introduced in more recent versions of UIMA
could be automatically removing Feature Structures from indexes and adding them back, if the
user was updating some Feature of a Feature Structure that was part of an index specification
for inclusion or ordering purposes.

In version 2, you would accomplish this using a two pass scheme: Pass 1 would iterate and
merely collect the Feature Structures to be updated into a Java collection of some kind. Pass 2
would use a plain Java iterator over that collection and modify the Feature Structures and/or the
UIMA indexes. This is no longer needed in version 3; UIMA iterators use a copy-on-write
technique to allow index updating, while doing whatever minimal copying is needed to continue
iteration over the original index.

6

In both version 2 and 3, there are 3 iterator movement APIs which have a side effect of insuring
the iterator is operating correctly over the current index contents. These are the moveToFirst,
moveToLast, and moveTo(some_feature_structure) API calls. In version 3, using these will
reinitialize the iterator (if needed) so that it is iterating over the current index contents; if the
index has not been modified, no reinitialization is needed (or done).

CAS reset and index removeAll operations clear the index without preserving any existing
iteration. If you try to continue an iteration over an index cleared by these operations, the
results are undefined, and may throw exceptions.

Logging updated

The UIMA logger is a facade that can be hooked up at deploy time to one of several logging
backends. It has been extended to implement all of the Logger API calls provided in the SLF4j
Logger interface, and has been changed to use SLF4j as its back-end. SLF4j, in turn, requires a
logging back-end which it determines by examining what’s available in the classpath, at deploy
time. This design allows UIMA to be more easily embedded in other systems which have their
own logging frameworks.

Modern loggers support MDC/NDC and Markers; these are supported now via the slf4j facade.
UIMA itself is extended to use these to provide contexts around logging.

See the following chapter on logging for details.

Automatic garbage collection of unreferenced Feature Structures

This allows creating of temporary Feature Structures, and automatically reclaiming space
resources when they are no longer needed. In version 2, space was reclaimed only when a CAS
was reset at the end of processing.

better performance

The internal design details have been extensively reworked to align with recent trends in
computer hardware over the last 10-15 years. In particular, space and time tradeoffs are
adjusted in favor of using more memory for better locality-of-reference, which improves
performance. In addition, the many internal algorithms (such as managing Feature Structure
indexes) have been improved.

Type system implementations are reused where possible, reducing the footprint in many scaled-
out cases.

Backwards compatible

Version 3 is intended to be binary backwards compatible - the goal is that you should be able to
run existing applications without recompiling them, except for the need to migrate or
regenerate any User supplied JCas Classes. Utilities are provided to help do the necessary JCas
migration mostly automatically.

Integration with Java 8

Version 3 requires Java 8 as the minimum level. Some of version 3’s new facilities, such as the
select framework for accessing Feature Structures from CASs or other collections, integrate with
the new Java 8 language constructs, such as Streams and Spliterators.

7

Programming convenience

Many APIs have been made more consistent and better integrated; see the chapter on new and
extended APIs. Examples: UIMA Indexes now implement Iterable, so you can use the Java
"extended for" construct directly; UIMA Lists have new push and pushNode methods to create
and link a new node onto the front of a list; there are new methods on the CAS and JCas to get a
shared instance of common immutable objects, like 0-length arrays and empty lists.

Just to give a small taste of the kinds of things Java 8 integration provides, here’s an example of
using the new select framework, where the task is to compute a Set of all the found types

• in a UIMA index

• under some top-most type "MyType"

• occurring as Annotations within a particular bounding Annotation

• that are nonOverlapping

Here is the Java code using the new select framework together with Java 8 streaming functions:

Set<Type> foundTypes =
 myIndex.select(MyType.class)
 .coveredBy(myBoundingAnnotation)
 .nonOverlapping()
 .map(fs -> fs.getType())
 .collect(Collectors.toCollection(TreeSet::new));

Another example: to collect, by category, the average length of the annotations having that category.
Here we assume that MyType is an Annotation and that it has a feature called category which returns
a String denoting the category:

Map<String, Double> freqByCategory =
 myIndex.select(MyType.class)
 .collect(Collectors
 .groupingBy(MyType::getCategory,
 Collectors.averagingDouble(f ->
 (double)(f.getEnd() - f.getBegin()))));

1.2. Java 8 is required
The UIMA Java SDK Version 3 requires Java 8.

8

Chapter 2. Backwards Compatibility
Because users have made substantial investment in developing applications using the UIMA
framework, a goal of version 3 is to protect this investment, by enabling Annotators and
applications developed under previous versions to be able to be used in subsequent versions of the
framework.

To this end, version 3 is designed to be backwards compatible, except for needing:

• possibly a recompilation (due to some rearrangements of many classes and interfaces)

• a new set of User-defined JCas classes (if these were previously being used). The creation of
these CAS classes can be done by regenerating them using JCasGen, or by using a migration tool
that handles converting the existing JCas classes. A later chapter covers how to upgrade the JCas
classes.

There are some additional exceptions, described in the following sections.

2.1. JCas and non-JCas APIs
The JCas class changes include no longer needing or using the Xyz_Type sister classes for each main
JCas class. User code is unlikely to access these sister classes. The JCas API method to access this
sister class now throws a UnsupportedOperation exception.

The non-JCas Java cover classes for the built-in UIMA types remain, for backwards compatibility. So,
if you have code that casts a Feature Structure instance to AnnotationImpl (a now deprecated
version 2 non-JCas Java cover class), that will continue to work.

2.1.1. Additional reserved names in the JCas generated classes

Names beginning with "_" (underscore) are being used by the new JCas implementation, so you
should not name things with this convention. If you do, please insure your names are not colliding
with the names being used by the generated JCas files.

2.2. Serialization forms
The backwards compatibility extends to the serialized forms, so that it should be possible to have a
UIMA-AS services working with a client, where the client is a version 3 instance, but the server is
still a version 2 (or vice versa).

2.2.1. Delta CAS Version 2 Binary deserialization not supported

The binary serialization forms, including Compressed Binary Form 4, build an internal model of the
v2 CAS in order to be able to deserialize v2 generated versions. For delta CAS, this model cannot be
accurately built, because version 3 excludes from the model all unreachable Feature Structures, so
in most cases it won’t match the version 2 layout.

Version 3 will throw an exception if delta CAS deserialization of a version 2 binary delta CAS is

9

attempted.

2.3. APIs for creating and modifying Feature
Structures
There are 3 sets of APIs for creating and modifying Feature Structures; all are supported in V3.

• Using the JCas classes

• Using the normal CAS interface with Type and Feature objects

• Using the low level CAS interface with int codes for Types and Features

Version 3 retains all 3 sets, to enable backward compatibility.

The low level CAS interface was originally provided to enable a extra-high-performance (but
without compile-time type safety checks) mode. In Version 3, this mode is actually somewhat slower
than the others, and no longer has any advantages.

Using the low level CAS interface also sometimes blocks one of the new features of Version 3 -
namely, automatic garbage collection of unreachable Feature Structures. This is because creating a
Feature Structure using the low level API creates the Java object for that Feature Structure, but
returns an "int" handle to it. In order to be able to find the Feature Structure, given that int handle,
an entry is made in an internal map. This map holds a reference to this Feature Structure, which
prevents it from being garbage collected (until of course, the CAS is reset).

The normal CAS APIs allow writing Annotators where the type system is unknown at compile time;
these are fully supported.

2.4. Preserving V2 ids, with low level CAS Api
accessibility
Some V2 applications make use of the Feature Structure address, using these as an integer identifier
and using the low level CAS APIs to access the Feature Structure, given this integer. These
applications also often use the stability of these ids across some serialization/deserializations.

Normally in V3, deserialization of CASs having these IDs occurs without preserving the IDs, and
without setting up the low level CAS APIs to be able to access these using them. If an existing
application depends on the low level access via the address, a special mode, called V2IdRefs, can be
specified, which will support this. It comes at a cost however, which is that all new Feature
Structures created (or deserialized) will be added to an internal table to enable the low level CAS
getFSForRef(int) method to work. As a result, these Feature Structures are not eligible for garbage
collection.

This mode is set on individual CASs via a new API; a default value may optionally be specified. Once
set on a CAS, it remains until set to a different value; CAS Reset does not affect the setting, nor does
checking it into / out of a CAS Pool.

When a new CAS is created, this mode is set according to two sources:

10

• a -Duima.default_v2_id_references system property, read once when the UIMA framework
classes are loaded.

• A run-time value kept per thread, managed by an API on the LowLevelCAS interface. The setting
is inherited by any child threads the thread creates, and overrides the system property if used.

• If neither of these are used, then the default is to not be in the sepcial v2-mode.

The APIs for this are part of the LowLevelCAS. The controlling APIs all return an instance of
AutoClosableNoException, which can be used to reset the setting to its previous value. A
recommended way of using these is with the Java try with resources construct:

try (AutoClosableNoException w = llcas.ll_enableV2IdRefs) {
 ... some operations
} // automatically restores previous value

LowLevelCas instance APIs for enabling/disabling this mode on a particular CAS:

// set the mode
AutoClosable ll_enableV2IdRefs()

// same, but with explicit set or reset of the mode
AutoClosableNoException ll_enableV2IdRefs(true/false)

// return true if the mode is enabled
boolean is_ll_enableV2IdRefs()

Static LowLevelCas APIs for setting the default value for this mode for new CASs on a particular
thread:

// set the default
AutoClosableNoException LowLeveCas.ll_defaultV2IdRefs()

// same, but with explicit set or reset of the mode
AutoClosableNoException LowLeveCas.ll_defaultV2IdRefs(true/false)

// return true if the mode is enabled
boolean LowLeveCas.is_ll_defaultV2IdRefs()

This mode modifies multiple things in the operation of UIMA V3.

• Newly created Feature structures have IDs which match what UIMA V2 references (the
"addresses") would be. For serialized forms (except Xmi), these IDs match the (imputed) v2 IDs
of the serialized form.

Newly created Feature Structures, including those created when deserializing, are added to an
internal map which maps the ID to the Feature Structure instance. Feature Structures may be
located by ID using the LowLevelCAS API getFSForRef().

11

In order for this to work correctly, the mode must be set while the CAS is empty. If the mode is
attempted to be set on a non-empty CAS, an IllegalStateException is thrown.

• This mode modifies serialization (except for XCas, XMI, and Compressed form 6, which in V2 are
implemented to just serialize reachable Feature Structures) to include non-reachable FSs.

• Note: This does not affect the select framework results - unreachable Feature Structures are not
included.

2.5. PEAR support
Pears are supported in Version 3. If they use JCas, their JCas classes need to be migrated.

When a PEAR contains a JCas class definition different from the surrounding non-PEAR context,
each Feature Structure instance within that PEAR has a lazily-created "dual" representation using
the PEAR’s JCas class definition. The UIMA framework things storing references to Feature
Structures are modified to store the non-PEAR version of the Feature Structure, but to return (when
in a particular PEAR component in the pipeline) the dual version. The intent is that this be
"invisible" to the PEAR’s annotators. Both of these representations share the same underlying CAS
data, so modifications to one are seen in the other.

If a user builds code that holds onto Feature Structure references, outside of annotators (e.g., as a
shared External Resource), and sets and references these from both outside and inside one (or
more) PEARs, they should adopt a strategy of storing the non-PEAR form. To get the non-PEAR form
from a Feature Structure, use the method myFeatureStructure._maybeGetBaseForPearFs().

Similarly, if code running in an Annotator within a PEAR wants to work with a Feature Structure
extracted from non-UIMA managed data outside of annotators (e.g., such as a shared External
Resource) where the form stored is the non-PEAR form, you can convert to the PEAR form using the
method myFeatureStructure.__maybeGetPearFs(). This method checks to see if the processing context
of the pipeline is currently within a PEAR, and if that PEAR has a different definition for that JCas
class, and if so, it returns that version of the Feature Structure.

The new Java Object support does not support multiple, different JCas class definitions for the same
UIMA Type, inside and outside of the PEAR context. If this is detected, a runtime exception is
thrown.

The workaround for this is to manually merge any JCas class definitions for the same class.

2.6. toString()
The formatting of various UIMA artifacts, including Feature Structures, has changed somewhat, to
be more informative. This may impact situations such as testing, where the exact string
representations are being compared.

A special global Java property, -Duima.v2_pretty_print_format can be set to have the toString()
operation for Feature Sructures print in the V2 style.

12

2.7. Logging configuration is somewhat different
The default logging configuration in v2 was to use Java Util Logging (the logger built into Java). For
v3, the default is to use SLF4J which, in turn, picks a back-end logger, depending on what it finds in
the class path.

This change was done to permit easier integration of UIMA as a library running within other
frameworks.

V3 UIMA logger includes the APIs like info(..), warn(..) etc., that are part of the SLF4j APIs. In
addition, these are augmented with the Java 8 style lambda arguments that were introduced in
log4j-2, for more concise and efficient log message computation.

The new UIMA Logger APIs (e.g. logger.info(…), logger.warn(…)) use the SLF4j and other modern
logger substitutable notation of "{}", as opposed to the style adopted by the original Java logger, of
"{nnn}". All modern loggers have switched to this.

The technique for (optionally) reporting the class and method (and sometimes, line number) was
changed to conform to current logger conventions - whereby the loggers themselves obtain this
information from the call stack. The V2 calls which pass in the sourceClass and sourceMethod
information have this information ignored, but replaced with what the loggers obtain from the
stack track. In some cases, where the callers in V2 were not actually passing in the correct
class/method information, this will result in a different log record.

For more details, please see the logging chapter.

2.8. Type System sharing
Type System definitions are shared when they are equal. After type systems have been built up
from type definitions, at "commit" time, a check is made to see if an identical type system already
exists (same types and features). This is often the case when a UIMA application is scaling up by
adding multiple pipelines, all using the same type system.

If an identical committed type system already exists, then the commit operation returns it, and the
one just built is discarded. Normally, this is not an issue. However, some application code may save
references to the type system object or to defined types and features. These references end up
pointing to the discarded version, when the commit operation finds an already committed equal
version.

Application code may code around this by re-acquiring references to the type system object, and to
any type and feature objects, if the type system instance object returned from commit is not identical
(==) to the one being committed. The type system commit APIs are changed to return the type
system - either the one being committed, or an already existing equal committed type system. So
when coding myTypesystem.commit(); if you later refer to myTypesystem, change this to myTypesystem =
myTypesystem.commit();, to keep the variable myTypesystem always referring to to the committed type
system.

13

2.9. Some checks moved to native Java
In the interest of performance, some duplicate checks, such as whether an array index is within
bounds, have been removed from UIMA when they are already being checked by the underlying
Java runtime. This has affected some of the internal APIs, such as the JCas’s checkArrayBounds which
was removed because it was no longer being used.

2.10. Some class hierarchies have been modified
The various JCas Classes implementing the built-ins for arrays have some additional interfaces
added, grouping them into CommonPrimitiveArray or CommonArray. These changes are internal, and
should not affect users.

2.11. Enabling multiple versions of type systems to
work with a single common JCas class
Some applications may use a JCas class definition, defining for type T features f1, f2, f3 (for
example), in a mode where under a single class loader (for example, in one Java application),
multiple CASs are loaded and processed, where each CAS might have other versions of the type
system, defining for type T a subset of the features in the JCas.

In order to make this scenario possible, v3 takes an extra step, right before type system commit
time, of loading the JCas classes corresponding to the types, and then augmenting the type
definitions with additional features defined in the JCas but not in the type description. After this is
done, the type system is committed, and offsets are assigned to the JCas class that are constant, even
when a subsequent type system is loaded that defines more features (provided that no new features
are introduced).

This feature represents a trade-off between highly efficient, locked-down offsets for features, and
some limited flexibility to handle a somewhat common use case where additional features exist in
the JCas. The JCas loading code always checks to insure compatibility between the offsets in the JCas
classes, as first set up, and any subsequent type system being used with that JCas.

This accommodation doesn’t handle many possible scenarios. Some of these include situations
where a supertype might subsequently add extra feature slots, or the features end up after merging
to have a different ordering.

For cases where this accommodation is insufficient, the workaround is to run separate UIMA
applications, each under its own class loader, for the incompatible situations.

PEARs, because they are loaded lazily after the type system has been committed, do not support this
kind of augmentation of types from the Pear-specific JCas class definition.

14

Chapter 3. New and Extended APIs

3.1. UIMA FSIndex and FSIterators improvements
The FSIndex interface implements Collection, so you can now write for (MyType item : myIndex) to
iterate over an index.

Because it implements Collection, the FSIndex interface includes a stream() method, so you can
now write myIndex.stream().any-stream-operations, which will use the items in the index as the
source of the stream.

The FSIterator interface now implements the Java ListIterator Interface, and supports the methods
there except for add, nextIndex, previousIndex, and set; the remove() method’s meaning is changed
to remove the item from all of the UIMA indexes.

The iterators over indexes no longer throw concurrent modification exceptions if the index is
modified while it is being iterated over. Instead, the iterators use a lazily-created copy-on-write
approach that, when some portion of the index is updated, prior to the update, copies the original
state of that portion, and continues to iterate over that. While this is helpful if you are explicitly
modifying the indexes in a loop, it can be especially helpful when modifying Feature Structures as
you iterate, because the UIMA support for detecting and avoiding possible index corruption if you
modify some feature being used by some index as a key, is automatically (under the covers)
temporarily removing the Feature Structure from indexes, doing the modification, and then adding
it back.

Similarly to version 2, iterator methods moveToFirst, moveToLast, and
moveTo(a_positioning_Feature_Structure) "reset" the iterator to be able to "see" the current state of
the indexes. This corresponds to resetting the concurrent modification detection sensing in version
2, when these methods are used.

Note that the phrase Concurrent Modification is being used here in a single threading to the indexes.
UIMA does not support multi-threaded write access to the CAS; it does support multi-threaded read
access to a set of CAS Views, concurrent with one thread having write access (to different views).

The remove() API for iterators is now implemented for FSIterators. Its meaning is slightly different
from the normal Java meaning - it doesn’t remove the item from the collection being iterated over;
rather it removes the Feature Structure returned by get() from all indexes in the view.

The FSIterator methods that normally check for iterator validity have versions which skip that
check. This may be a performance optimization in cases where you can guarantee the iterator is
valid, for example if you have a loop which is checking hasNext() and following it with a next(),
which is only executed if the hasNext() was true. The non-checking versions are suffixed with Nvc
(stands for No Validity Check).

The FSIndex API has a new method, subType(type-spec), which returns an FSIndex for the same
index, but specialized to elements which are a subtype of the original index. The type-spec can be
either a JCas class, e.g. MyToken.class, or a UIMA type instance.

15

3.2. New Select API
A versatile new Select framework for accessing and acting on Feature Structures selected from the
CAS or from Indexes or from other collection objects is documented in a separate chapter. This API
is integrated with Java 8’s Stream facility.

3.3. New custom Java objects in the CAS framework
There is a new framework that supports allowing you to add your own custom Java objects as
objects transportable in the CAS. A following chapter describes this facility, and some new semi-
built-in types that make use of it.

3.4. Built-in lists and arrays
The built-in FSArray JCas class is now parameterized with the type of its elements.

UIMA Array and List types implement Iterable, so you can use them like this: for (MyType item :
myArray) ….

UIMA Arrays and Lists support contains(element) and isEmpty().

UIMA Array and List types support a stream() method returning a Stream or a type-specialized sub
interface of Stream for primitives (IntStream, LongStream, DoubleStream) over the objects in the
collection. Omitted are stream types where boxing would occur - Arrays of Byte, Short, Float,
Boolean.

The iterator() methods for IntegerList IntegerArrayList, IntegerArray, DoubleArray, and
LongArray return an OfInt / OfDouble / OfLong instances. These are subtypes of Iterator with an
additional methods nextInt / nextLong / nextDouble which avoid the boxing of the normal iterator.

The new select framework supports stream operations; see the "select" chapter for details.

A new set of methods on UIMA built-in lists, createNonEmptyNode() and emptyList(), creates a non-
empty node of the type, or retrieves a (shared) empty node of the type. These methods are not
static, and create or get the instance in the same CAS as the object instance. These methods are
callable on both the empty and non-empty node instances, or on their shared super interface, for
example, on NonEmptyFloatList, EmptyFloatList, and FloatList (the common super interface).

A new set of static methods on UIMA built-in lists and arrays, create(jcas, array_source) take a
Java array of items, and creates a corresponding UIMA built-in list or array populated with items
from the array_source.

For UIMA Lists and Arrays, the CAS and JCas has emptyXXXList/Array methods, which return a
shared instance of the immutable empty object. The Cas and JCas have generic emptyArray/List,
taking an argument JCas class identifying the type, e.g. FloatArray.class, StringList.class, etc.

For lists, there are some new common APIs for all list kinds.

• push(item) pushes the item onto an existing list node, creates a new non-empty node, setting its

16

head to item and its tail to the existing list node. This allows easy construction of a list in
backwards order.

• pushNode() creates and links in a new node in front of this node.

• insertNode() creates and links in a new node following this node.

• createNonEmptyNode() creates a node of the same type, in the same CAS, without linking it.

• getCommonTail() gets the tail of the node

• setTail() sets the tail of the node

• walkList() walks the list applying a consumer to each item

• getLength() walks the list to compute its length

• emptyList returns a shared instance of the empty list of the same type, in the same CAS

3.4.1. Built-in lists and arrays have common super classes / interfaces

Some methods common to multiple implements were moved to the super classes, some classes
were made abstract (to prevent them from being instantiated, which would be an error). For
arrays, a new method common to all arrays, copyValuesFrom() copies values from arrays of the same
type.

3.5. Many UIMA objects implement Stream or
Collection
In Java 8, classes which implement Collection can be converted to streams using the xxx.sream()
method. To better integrate with Java 8, the following UIMA classes and interfaces now implement
Stream or Collection:

• FSIndex (implements Collection)

• all of the built-in Arrays, e.g. FloatArray implement Stream, the Integer/long/double arrays
implement the non-boxing version

• all of the built-in Lists implement Stream, the IntegerList implements the non boxing version

3.6. Reorganized APIs
Some APIs were reorganized. Some of the reorganizations include altering the super class and
implements hierarchies, making some classes abstract, making use of Java 8’s new default
mechanisms to supply default implementations in interfaces, and moving methods to more
common places. Users of the non-internal UIMA APIs should not be affected by these
reorganizations.

As an example, version 2 had two different Java objects representing particular Feature Structures,
such as "Annotation". One was used (org.apache.uima.jcas.tcas.Annotation) if the JCas was enabled;
the other (org.apache.uima.cas.impl.AnnotationImpl)otherwise. In version 3, there’s only one
implementation; the other (AnnotationImpl) is converted to an interface. Annotation now
"implements AnnotationImpl.

17

3.7. Use of JCas Class to specify a UIMA type
Several APIs require a UIMA type to be specified. For instance, the API to remove all Feature
Structures of a particular type requires the type to be specified. Instead of a UIMA Type object, if
there is a JCas cover class for that type, you can pass that as well, as (for example) Annotation.class.

3.8. JCasGen changes
JCasgen is modified to generate the v3 style of JCas cover classes. It no longer generates the the
xxx_Type.java classes, as these are not used by UIMA Version 3.

3.8.1. JCas additional static fields

Static final string fields are declared for each JCas cover class and for each feature that is part of
that UIMA type. The fields look like this example, taken from the Sofa class:

public final static String _TypeName = "org.apache.uima.jcas.cas.Sofa";
public final static String _FeatName_sofaNum = "sofaNum";
public final static String _FeatName_sofaID = "sofaID";
public final static String _FeatName_mimeType = "mimeType";
public final static String _FeatName_sofaArray = "sofaArray";
public final static String _FeatName_sofaString = "sofaString";
public final static String _FeatName_sofaURI = "sofaURI";

Each string has a generated name corresponding to the name of the type or the feature, and a string
value constant which of the type or feature name. These can be useful in Java Annotations.

3.9. Generics added
Version 3 adds generic typing to several structures, and makes use of this to enable users to
unclutter their code by taking advantage of Java’s type inferencing, in many cases.

Generic types are added to:

• FSIndex <T extends FeatureStructure> the type the index is over.

• FSArray <T extends FeatureStructure> the type the FSArray holds.

• FSList <T extends TOP> the type the FSList holds.

• SelectFSs <T extends FeatureStructure> the type the select is producing.

3.10. Other changes
The convenience methods in the JCas have been duplicated in the CAS, e.g. getAllIndexFS.

New methods getIndexedFSs(myUimaType) and getIndexedFSs(MyJCas.class) return unmodifiable,
unordered Collections of all indexed Feature Structures of the specified type and its subtypes in this
CAS’s view. This collection can be used in a Java extended-for loop construction. getIndexedFSs() is

18

the same but is for all Feature Structures, regardless of type. These are methods on the CAS, JCas,
FSIndexRepository interfaces, and return the Feature Structures of the specified type (including
subtypes).

The TypeSystemMgr Interface has a variation of the commit method, which has a parameter that
specifies the class loader to be used when loading JCas class. This should be used whenever there
are user-specified JCas classes associated with the type system. If not specified, it defaults to the
class loader used to load the UIMA framework.

The utility class org.apache.uima.util.FileUtils has a new method writeToFile(path, string),
which efficiently writes a string using UTF-8 encoding to path.

The StringArray class has a new contains(a_string) method.

The CAS protectIndexes method returns an instance of AutoClosableNoException which is a subtype
where the close method doesn’t throw an exception. This allows writing the try-with-resources
form without a catch block for Exception.

Sometimes Annotators may log excessively, causing problems in production settings. Although this
could be controlled using logging configuration, sometimes when UIMA is embedded into other
applications, you may not have easy access to modify those.

For this case, the produceAnalysisEngine’s "additionalParameters" map supports a new key,
AnalysisEngine.PARAM_THROTTLE_EXCESSIVE_ANNOTATOR_LOGGING. This key specifies that
throttling should be applied to messages produced by annotators using loggers obtained by
Annotator code using the getLogger() API.

The value specified must be an Integer, and is the number of messages allowed before logging is
suppressed. This number is applied to each logging level, separately. To suppress all logging, use 0.

The Type interface has new methods subsumes(another_type), isStringOrStringSubtype(), and
isStringSubtype().

The FlowController_ImplBase supports a getLogger() API, which is shorthand for
getContext().getLogger().

Many error messages were changed or added, causing changes to localization classes. For coding
efficiency, some of the structure of the internal error reporting calls was changed to make use of
Java’s variable number of arguments syntax.

The UIMA Logger implementation has been extended with both the SLF4J logger APIs and the Log4j
APIs which support Java 8’s Supplier Functional Interfaces.

The TypeSystem and Type object implementations implement Iterable and will iterate over all the
defined types, or, for a type, all the defined Features for that type.

19

Chapter 4. SelectFS CAS data access
The select framework provides a concise way to work with Feature Structure data stored in the CAS.
It is integrated with the Java 8 stream framework, and provides additional capabilities supported by
the underlying UIMA framework, including the ability to move both forwards and backwards while
iterating, moving to specific positions, and doing various kinds of specialized Annotation selection
such as working with Annotations spanned by another annotation (think of a Paragraph
annotation, and the Sentences or Tokens within that).

There are 3 main parts to this framework:

• The source

• what to select, ordering

• what to do

Figure 1. Select - the big picture

These are described in code using a builder pattern to specify the many options and parameters.
Some of the very common parameters are also available as positional arguments in some contexts.
Most of the variations are defaulted so that in the common use cases, they may be omitted.

4.1. Select’s use of the builder pattern
The various options and specifications are specified using the builder pattern. Each specification
has a name, which is a Java method name, sometimes having further parameters. These methods
return an instance of SelectFSs; this instance is updated by each builder method.

A common approach is to chain these methods together. When this is done, each subsequent
method updates the SelectFSs instance. This means that the last method in case there are multiple
method calls specifying the same specification is the one that is used.

For example,

a_cas.select().typePriority(true).typePriority(false).typePriority(true)

would configure the select to be using typePriority (described later).

Some parameters are specified as positional parameters, for example, a UIMA Type, or a starting
position or shift-offset.

20

4.2. Sources of Feature Structures
Feature Structures are kept in the CAS, and may be accessed using UIMA Indexes. Note that not all
Feature Structures in the CAS are in the UIMA indexes; only those that the user had "added to the
indexes" are. Feature Structures not in the indexes are not included when using the CAS as the
source for the select framework.

Feature Structures may, additionally, be kept in FSArrays, FSLists, and many additional collection-
style objects that implement SelectViaCopyToArray interface. This interface is implemented by the
new semi-built-in types FSArrayList, FSHashSet and FSLinkedHashSet; user-defined JCas classes for
user types may also choose to implement this. All of these sources may be used with select.

Figure 2. select method with type

For CAS sources, if Views are being used, there is a separate set of indexes per CAS view. When
there are multiple views, only one view’s set of indexed Feature Structures is accessed - the view
implied by the CAS being used. Note that there is a way to specify aggregating over all views; see
allViews described later.

For CAS sources, users may specify all Feature Structures in a view, or restrict this in two ways:

• specifying an index: Users may define their own indexes, in additional to the built in ones, and
then specify which index to use.

• specifying a type: Only Feature Structures of this type (or its subtypes) are included.

It is possible to specify both of these, using the form myIndex.select(myType); in that case the type
must be the type or a subtype of the index’s top most type.

21

If no index is specified, the default is

• to use all Feature Structures in a CAS View, or

• to use all Feature Structures in the view’s AnnotationIndex, if the selection and ordering
specifications require an AnnotationIndex.

Note that the non-CAS collection sources (e.g. the FSArray and FSList sources are considered
ordered, but non-sorted, and therefore cannot be used for an operations which require a sorted
order.

There are 4 kinds of sources of Feature Structures supported:

• a CAS view: all the FSs that were added to the indexes for this view.

• an Index over a CAS view. Note that the AnnotationIndex is often implied by other select
specifications, so it is often not necessary to supply this.

• Feature Structures from a (semi) built-in UIMA Collection instance, such as instances of the
types FSArray, FSArrayList, FSHashSet, etc.

• Feature Structures from a user-defined UIMA Collection instance.

UIMA Collection sources have somewhat limited configurability, because they are considered non-
sorted, and therefore cannot be used for an operations which require a sorted order, such as the
various bounding selections (e.g. coveredBy) or positioning operations (e.g. startAt).

Each of these sources has a new API method, select(…), which initiates the select specification. The
select method can take an optional parameter, specifying the UIMA type to return. If supplied, the
type must must be the type or subtype of the index (if one is specified or implied); it serves to
further restrict the types selected beyond whatever the index (if specified) has as its top-most type.

4.2.1. Use of Type in selection of sources

The optional type argument for select(…) specifies a UIMA type. This restricts the Feature
Structures to just those of the specified type or any of its subtypes. If omitted, if an index is used as
a source, its type specification is used; otherwise all types are included.

Type specifications may be specified in multiple ways. The best practice, if you have a JCas cover
class defined for the type, is to use the form MyJCasClass.class. This has the advantage of setting the
expected generic type of the select to that Java type.

The type may also be specified by using the actual UIMA type instance (useful if not using the JCas),
using a fully qualified type name as a string, or using the JCas class static type field.

4.2.2. Sources and generic typing

The select method results in a generically typed object, which is used to have subsequent
operations make use of the generic type, which may reduce the need for casting.

The generic type can come from arguments or from where a value is being assigned, if that target
has a generic type. This latter source is only partially available in Java, as it does not propagate past

22

the first object in a chain of calls; this becomes a problem when using select with generically typed
index variables.

There is also a static version of the select method which takes a generically typed index as an
argument.

The best practice is to pass the JCas class representing the type you want, to the select statement.
This enables the generic typing mechanism to be set to that type. In the example below, we use
Token as the type, and fsIterator() just as an example of some terminal form action.

// Best practice, when possible
// the generic type for Token is passed as an argument to select
FSIterator<Token> token_it = cas.select(Token.class).fsIterator();

A compile-time generic type can be specified after the select, if the class argument form of select is
not used. In these two examples, the generic type is being specified at compile time, explicitly:

// ... myCas.select(myType).<Token>fsIterator() ...
// ... myIndexOversomeType.select().<Token>further-operators-of-select-etc

Java 8’s type inference doesn’t take the generic type past the first object in a build chain, so you can
use these techniques to overcome that. In these examples, tkn_idx is a generically typed variable:

FSIndex<Token> tkn_idx = ... ; // generically typed variable

We show a straight-forward syntax that doesn’t work, followed by 3 alternatives that do work.

// this next fails because the Token generic type from the
// index variable being assigned doesn't get passed to the select().

FSIterator<Token> token_iterator = tkn_idx.select().fsIterator();

You can overcome this in three ways:

// pass in the type as an argument to select using the JCas cover type.

FSIterator<Token> token_iterator =
 tkn_idx.select(Token.class).fsIterator();

// Or use the static form of select (avoids repeating the type info)

FSIterator<Token> token_iterator =
 SelectFSs.select(tkn_idx).fsIterator();

// Or you can also explicitly set the generic type

23

// that select() should use, like this:

FSIterator<Token> token_iterator =
 tkn_idx.<Token>select().fsIterator();

Note: the static select method may be statically imported into code that uses it, to avoid repeatedly
qualifying this with its class, SelectFSs.

Any specification of an index may be further restricted to just a subType (including that subtype’s
subtypes, if any) of that index’s type. For example, an AnnotationIndex may be specialized to just
Tokens (and their subtypes):

FSIterator<Token> token_iterator =
 annotation_index.select(Token.class).fsIterator();

4.3. Selection and Ordering
There are four sets of sub-selection and ordering specifications, grouped by what they apply to:

• all sources

• Indexes or FSArrays or FSLists

• Ordered Indexes

• The Annotation Index

With some exceptions, configuration items to the left also apply to items on the right.

When the same configuration item is specified multiple times, the last one specified is the one that
is used.

24

Figure 3. Selection and Ordering

4.3.1. Boolean properties

Many configuration items specify a boolean property. These are named so the default (if you don’t
specify them) is generally what is desired, and the specification of the method with null parameter
switches the property to the other (non-default) value.

For example, normally, when working with bounded limits within Annotation Indexes, type
priorities are ignored when computing the bound positions. Specifying typePriority() says to use
type priorities.

Additionally, the boolean configuration methods have an optional form where they take a boolean
value; true sets the property. So, for example typePriority(true) is equivalent to typePriority(), and
typePriority(false) is equivalent to omitting this configuration.

4.3.2. Configuration for any source

limit

a limit to the number of Feature Structures that will be produced or iterated over.

nullOK

changes the behavior for the terminal_form actions get(…) and single(…), which would
otherwise throw an exception if a null result happened.

4.3.3. Configuration for any index

allViews

Normally, only Feature Structures belonging to the particular CAS view are included in the

25

selection. If you want, instead, to include Feature Structures from all views, you can specify
allViews().

When this is specified, it acts as an aggregation of the underlying selections, one per view in the
CAS. The ordering among the views is arbitrary; the ordering within each view is the same as if
this setting wasn’t in force. Because of this implementation, the items in the selection may not be
unique —  Feature Structures in the underlying selections that are in multiple views will appear
multiple times.

4.3.4. Configuration for sort-ordered indexes

When an index is sort-ordered, there are additional capabilities that can be configured, in
particular positioning to particular Feature Structures, and running various iterations backwards.

orderNotNeeded

relaxes any iteration by allowing it to proceed in an unordered manner. Specifying this may
improve performance in some cases. When this is specified, the current implementation skips
the work of keeping multiple iterators for a type and all of its subtypes in the proper
synchronization.

startAt

position the starting point of any iteration. startAt(…) can be used for general sorted indexes,
and also has special formats only usable for Annotation Indexes.

// Forms for any sorted index
startAt(fs); // fs specifies a feature structure
 // indicating the starting position

startAt(fs, shifted); // same as above, but after positioning,
 // shift to the right or left by the shift
 // amount which can be positive or negative

// Forms for AnnotationIndex sources

startAt(begin); // sets no TypePriorities, and starts at the
 // leftmost annotation whose begin is >= begin
startAt(begin, end); // start at the position indicated by begin/end

startAt(begin, end, shifted) // same as above,
 // but with a subsequent shift.
 // which can be positive or negative

NOTE
The use of startAt in conjunction with following or prededing or any of the bounded
sub-selection operators is not supported.

backwards

specifies that the result is returned the opposite order than normal. It does not matter at which
point in the selection this method is invoked. So e.g. …backwards().limit(5) returns the same

26

result as …limit(5).backwards(). Also, invoking this method twice does not "un-reverse" the
results.

4.3.5. Following or Preceding

For an Annotation Index, you can specify all Feature Structures following or preceding a position.
The position can be specified either as an Annotation or by specifying an annotation begin index.
Both of these can have an additional shift offset amount as a 2nd parameter. Note that the
positioning arguments differ from the startAt specification, which uses both begin and end values.

following

Position the iterator according to the argument, and then move the iterator forwards until the
Annotation at that position has its begin value >= to the positioning annotation’s end value.

If the position is specified as an int, move the iterator forwards until the Annotation at that
position has its begin value >= the specified int.

preceding

Position the iterator according to the argument, and then move it backwards until the
Annotation’s (at that position) end value is ⇐ to the positioning Annotation’s begin value.

If the position is specified as an int, treat this as the begin value.

Once positioned, the actual iteration starts at the beginning and ends at the last position.

The preceding iteration skips over annotations whose end values are > the positioning annotation’s
begin value, or the positioning int’s value.

NOTE

When using following/preceding in combination with limit, backwards, shifted and
non-overlappin, the order in which these operations are internally applied is as
follows.

1. unambiguous - first, ambiguous annotations are skipped. The shift amount does
not affect which which of the ambiguous annotations are skipped.

2. shifted - after removing the ambiguous annotations, items in the result set can
be skipped in the direction of the selection. A negative shift is implicitly capped
to 0. E.g. consider you have [10, 20] [20, 30] and select().preceding([30, 40]),
the result would be [10, 20] [20, 30] (in this order). Because the shift skips
away from the reference point, the result of select().preceding([30,
40]).shifted(1) is [10, 20] and not [20, 30].

3. limit - the limit is applied after shifting. Thus, the amount of shifting has no
effect on the limit.

4. backwards - finally, the result set may be reversed.

4.3.6. Bounded sub-selection within an Annotation Index

When selecting Annotations, frequently you may want to select only those which have a relation to
a bounding Annotation. A commonly done selection is to select all Annotations (of a particular type

27

including its subtypes) within the span of another bounding Annotation, for example, all Tokens
within a Sentence.

There are four varieties of sub-selection within an annotation index. They all are based on a
bounding Annotation (except the between which is based on two bounding Annotations).

The bounding Annotations are specified using either a Annotation (or a subtype), or by specifying
the begin and end offsets that would be for the bounding Annotation.

Leaving aside between as a special case, the bounding Annotation’s begin and end (and sometimes, its
type) is used to specify where an iteration would start, where it would end, and possibly, which
Annotations within those bounds would be filtered out. There are many variations possible; these
are described in the next section.

The returned Annotations exclude the one(s) which are equal to the bounding FS. There are several
variations of how this equal test is done, discussed in the next section.

coveredBy

iterates over Annotations within the bound

covering

iterates over Annotations that span the bound.

at

iterates over Annotations that have the same span (i.e., begin and end) as the bound.

between

uses two Annotations, and returns Annotations that are in between the two bounds, specified by
Annotations. If the bounds are backwards, then they are automatically used in reverse order.
The meaning of between is that an included Annotation’s begin has to be >= the earlier bound’s
end, and the Annotation’s end has to be ⇐ the later bound’s begin.

NOTE

When using following/preceding in combination with limit, backwards, shifted and
non-overlappin, the order in which these operations are internally applied is as
follows.

1. unambiguous - first, ambiguous annotations are skipped. The shift amount does
not affect which which of the ambiguous annotations are skipped.

2. backwards - if requested, reversal is applied before shift and limit.

3. shifted - after removing the ambiguous annotations, items in the result set can
be skipped. the end of the. A negative shift is implicitly capped to 0.

4. limit - the limit is applied after shifting. Thus, the amount of shifting has no
effect on the limit.

4.3.7. Variations in Bounded sub-selection within an Annotation Index

There are five variations you can specify. Two affect how the starting bound position is set; the
other three affect skipping of some Annotations while iterating. The defaults (summarized

28

following) are designed to fit the popular use cases.

typePriority

The default is to ignore type priorities when setting the starting position, and just use the begin /
end position to locate the left-most equal spot. If you want to respect type priorities, specify this
variant.

nonOverlapping

Normally, all Annotations satisfying the bounds are returned. If this is set, annotations whose
begin position is not >= the previous annotation’s (going forwards) end position are skipped. This
is also called unambiguous iteration. If the iterator is run backwards, it is first run forwards to
locate all the items that would be in the forward iteration following the rules; and then those are
traversed backwards. This variant is ignored for covering selection.

includeAnnotationsWithEndBeyondBounds

The Subiterator strict configuration is equivalent to the opposite of this. This only applied to the
coveredBy selection; if specified, then any Annotations whose end position is > the end position of
the bounding Annotation are included; normally they are skipped.

skipSameBeginEndType

While doing bounded iteration, if the Annotation being returned is identical (has the same _id())
with the bounding Annotation, it is always skipped.

Other annotations, which might have the same begin, end, and type values, are not skipped, but
instead, included, by default.

When this configuration is specified, any Annotation which has the same begin, end, and type is
also skipped.

NOTE

If you do not want any of the indexed annotations to be skipped, you can achieve
this by

• insuring you haven’t set skipWhenSameBeginEndType()

• making a bounding annotation with the begin / end / type you want for the
bound

• Don’t add this bounding annotation to the index

Because the bounding annotation will not be equal (have the same Feature
Structure ID) as any annotations in the index (because you haven’t indexed it), it
will never match any annotations found in the index while iterating.

4.3.8. Defaults for bounded selects

The ordinary core UIMA Subiterator implementation defaults to using type order as part of the
bounds determination. uimaFIT, in contrast, doesn’t use type order, and sets bounds according to
the begin and end positions.

This select implementation mostly follows the uimaFIT approach by default, but provides the

29

above configuration settings to flexibly alter this to the user’s preferences. For reference, here are
the default settings, with some comparisons to the defaults for Subiterators:

typePriority

default: false; type priorities are not used when moving to left-most among equal items.
Subiterators created using the AnnotationIndex, in contrast, use type priorities.

nonOverlapping

default: false; no Annotations are skipped because they overlap. This corresponds to the
"ambiguous" mode in Subiterators.

includeAnnotationsWithEndBeyondBounds

default: (only applies to coveredBy selections; The default is to skip Annotations whose end
position lies outside of the bounds; this corresponds to Subiterator’s "strict" option.

skipSameBeginEndType

default: only the single Annotation with the same _id() is skipped when using a bounded
iteration. Use this setting to expand the set of skipped Annotations to include all those equal to
the bound’s begin, end and type.

4.4. Terminal Form actions
After the sources and selection and ordering options have been specified, one terminal form action
may be specified. This can be an getting an iterator, array or list, or a single value with various
extra checks, or a Java stream. Specifying any stream operation (except limit) converts the object to
a stream; from that point on, any stream operation may be used.

Figure 4. Select Terminal Form Actions

30

4.4.1. Iterators

(Iterable)

The SelectFSs object directly implements Iterable, so it may be used in the extended Java for
loop.

fsIterator

returns a configured fsIterator or subIterator. This iterator implements ListIterator as well
(which, in turn, implements Java Iterator). Modifications to the list using add or set are not
supported.

iterator

This is just the plain Java iterator, for convenience.

spliterator

This returns a spliterator, which can be marginally more efficient to use than a normal iterator.
It is configured to be sequential (not parallel), and has other characteristics set according to the
sources and selection/ordering configuration.

4.4.2. Arrays and Lists

asArray

This takes 1 argument, the class of the returned array type, which must be the type or subtype of
the select.

asList

Returns a Java list, configured from the sources and selection and ordering specifications.

4.4.3. Single Items

These methods return just a single item, according to the previously specified select configuration.
Variations may throw exceptions on empty or more than one item situations.

These have no-argument forms as well as argument forms identical to startAt (see above). When
arguments are specified, they adjust the item returned by positioning within the index according to
the arguments.

NOTE
Positioning arguments with a Annotation or begin and end require an Annotation
Index. Positioning using a Feature Structure, by contrast, only require that the index
being use be sorted.

get

If no argument is specified, then returns the first item. If there is no item, then an exception is
thrown unless nullOK is set.

If any positioning arguments are specified, then this returns the item at that position unless
there is no item at that position, in which case it throws an exception unless nullOK is set.

31

single

returns the item at the position, but throws exceptions if there are more than one item in the
selection, or if there are no items in the selection.

singleOrNull

returns the item at the position, but throws an exception if there are more than one item in the
selection.

isEmpty

returns true if the selection is empty.

4.4.4. Streams

any stream method

Select supports all the stream methods. The first occurrance of a stream method converts the
select into a stream, using spliterator, and from then on, it behaves just like a stream object.

For example, here’s a somewhat contrived example: you could do the following to collect the set
of types appearing within some bounding annotation, when considered in nonOverlapping style:

// items of MyType or subtypes
Set<Type> foundTypes = myIndex.select(MyType.class)
 .coveredBy(myBoundingAnnotation)
 .nonOverlapping()
 .map(fs -> fs.getType())
 .collect(Collectors.toCollection(TreeSet::new));

Or, to collect by category a set of frequency values:

Map<Category, Integer> freqByCategory = myIndex.select(MyType.class)
 .collect(Collectors
 .groupingBy(MyType::getCategory,
 Collectors.summingInt(MyType::getFreq)));

32

Chapter 5. Annotation relation predicates
When working with annotations, it is often necessary to express how two annotations related to
each other. This happens for example when using the Select framework to say "select all
annotations of type T that follow a given annotation X". So there are a number of possible
relationships which two annotations can have with each other such as "following", "preceding",
"being colocated", "being covered by", "covering", etc. This chapter provides specification of these
relationships which are also available as a set of predicate functions. The Select framework is also
consistent with these definitions. In order to query the CAS for annotations that exist in a certain
relationship to each other, it is possible to e.g. stream an entire annotation index or CAS and
filtering the annotations using the provided predicate functions. However, using the corresponding
selector functions of the Select framework is generally much faster than filtering using the
predicates as Select knows more efficient way of finding the starting point for a particular query in
the annotation index and also knows when a search can be aborted without having to scan an
entire index and also without missing any matches. The predicates are implemented as static
functions in the org.apache.uima.cas.text.AnnotationPredicates class.

Figure 5. Annotation relation types

As shown below, all of the relations can be expressed in terms of the "covered by" relation.

33

Figure 6. Annotation relation types

34

Chapter 6. Type discovery via SPI

6.1. JCas class discovery
JCas types and associated type system descriptions can be made discoverable by UIMA using Java’s
SPI mechanism.

NOTE
The core UIMA Java SDK currently only this mechanism to discover JCas classes. The
SPI-based auto-discovery of type system descriptions described here is supported by
uimaFIT 3.6.0 and higher. A legacy implementation has been supported since 3.4.0

SPI-based JCas class discovery is important in situation where multiple classloaders are used, e.g. in
OSGi environments. This is because JCas classes must be globally unique in the entire system (with
the exception of PEARs which can have their own JCas classes). So if JCas classes are to be provided
through different class loaders (e.g. OSGI bundle classloaders), they must be announced via SPI,
otherwise UIMA will not be able to reliably associated the JCas classes with their unique
classloader.

To announce JCas classes via SPI, create a file META-
INF/services/org.apache.uima.spi.TypeSystemProvider and in the file, place implementations of the
interface org.apache.uima.spi.TypeSystemProvider, one per line.

Typically, these implementations are done by sub-classing
org.apache.uima.spi.TypeSystemProvider_ImplBase and setting the exported resources in the
constructor implementation.

6.2. Type system description discovery
The core UIMA framework defines the TypeSystemProvider interface to also enable type system
discovery via SPI. However, note that currently only uimaFIT actually implements the type system
discovery.

Again, you typically subclass org.apache.uima.spi.TypeSystemProvider_ImplBase to provide
implementations.

35

Chapter 7. CAS-transported custom Java
objects
One of the goals of v3 is to support more of the Java collection framework within the CAS, to enable
users to conveniently build more complex models that could be transported by the CAS. For
example, a user might want to store a Java "Set" object, representing a set of Feature Structures. Or
a user might want to use an adjustable array, like Java’s ArrayList.

With the current version 2 implementation of JCas, users already may add arbitrary Java objects to
their JCas class definitions as fields, but these do not get transported with the CAS (for instance,
during serialization). Furthermore, in version 2, the actual JCas instance you get when accessing a
Feature Structure in some edge cases may be a fresh instance, losing any previously computed
value held as a Java field. In contrast, each Feature Structure in a CAS is represented as the same
unique Java Object (because that’s the only way a Feature Structure is stored).

Version 3 has a new a capability that enables converting arbitrary Java objects that might be part of
a JCas class definition, into "ordinary" CAS values that can be transported with the CAS. This is done
using a set of conventions which the framework follows, and which developers writing these
classes make use of; they include two kinds of marker Java interfaces, and 2 methods that are called
when serializing and deserializing.

The marker interfaces identify those JCas classes which need these extra methods called. The extra
methods are methods implemented by the creator of these JCas classes, which marshal/unmarshal
CAS feature data to/from the Java Object this class is supporting.

Storing the Java Object data as the value of a normal CAS Feature means that they get "transported"
in a portable way with the CAS - they can be saved to external storage and read back in later, or
sent to remote services, etc.

7.1. Tutorial example
Here’s a tutorial example on how to design and implement your own special Java object. For this
example, we’ll imagine we need to implement a map from FeatureStructures to FeatureStructures.

36

Figure 7. Creating a custom Java CAS-stored Object

Step 1 is deciding on the Java Object implementation to use. We can define a special class, but in
this case, we’ll just use the ordinary Java HashMap<TOP, TOP> for this.

Step 2 is deciding on the CAS Feature Structure representation of this. For this example, let’s design
this to represent the serialized form of the hashmap as 2 FSArrays, one for the keys, and one for the
values. We could also use just one array and intermingle the keys and values. It’s up to the designer
of this new JCas class to decide how to do this.

Step 3 is defining the UIMA Type for this. Let’s call it FS2FSmap. It will have 2 Features: an FSArray
for the keys, and another FSArray for the values. Let’s name those features "keys" and "values".
Notice that there’s no mention of the Java object in the UIMA Type definition.

Step 4 is to run JCasGen on this class to get an initial version of the class. Of course, it will be
missing the Java HashMap, but we’ll add that in the next step.

Step 5: modify 3 aspects of the generated JCas class.:

+ 1. Mark the class with one of two interfaces::

+ * UimaSerializable * UimaSerializableFSs These identify this JCas class a needing the calls to
marshal/unmarshal the data to/from the Java Object and the normal CAS data features. Use the
second form if the data includes any Feature Structure references. In our example, the data does
include Feature Structure references, so we add implements UimaSerializableFSs to our JCas class.

+ 2. Add the Java Object as a field to the class:: We’ll define a new field:

+

37

final private Map<TOP, TOP> fs2fsMap = new HashMap<>();

+ 3. Implement two methods to marshal/unmarshal the Java Object data to the CAS Data Features::
::Now, we need to add the code that translates between the two UIMA Features "keys" and "values"
and the map, and vice-versa. We put this code into two methods, called _init_from_cas_data and
_save_to_cas_data. These are special methods that are part of this new framework extension; they
are called by the framework at critical times during deserialization and serialization. Their purpose
is to encapsulate all that is needed to convert from transportable normal CAS data, and the Java
Object(s).

+ In this example, the _init_from_cas_data method would iterate over the two Features, together,
and add each key value pair to the Java Object. Likewise, the _save_to_cas_data would first create
two FSArray objects for the keys and values, and then iterate over the hash map and extract these
and set them into the key and value arrays.

+

public void _init_from_cas_data() {
 FSArray keys = getKeys();
 FSArray values = getValues();
 fs2fsMap.clear();
 for (int i = keys.size() - 1; i >=0; i--) {
 fs2fsMap.put(keys.get(i), values.get(i));
 }
}

public void _save_to_cas_data() {
 int i = 0;
 FSArray keys = new FSArray(this, fs2fsMap.size());
 FSArray values = new FSArray(this, fs2fsMap.size());
 for (Entry<TOP, TOP> entry : fs2fsMap.entrySet()) {
 keys.set(i, entry.getKey());
 values.set(i, entry.getValues());
 i++;
 }
 setKeys(keys);
 setValues(values);
}

+ Beyond this simple implementation, various optimization can be done. One typical one is to treat
the use case where no updates were done as a special case (but one which might occur frequently),
and in that case having the _save_to_cas_data operation do nothing, since the original CAS data is
still valid.

+ One additional "boilerplate" method is required for all of these classes:

+

38

public FeatureStructureImplC _superClone() {return clone();}`

+ For custom types which hold collections of Feature Structures, you can have those participate in
the Select framework, by implementing the optional Interface SelectViaCopyToArray.

For more examples, please see the implementations of the semi-built-in classes described in the
following section.

7.2. Additional semi-built-in UIMA Types for some
common Java Objects
Some additional semi-built-in UIMA types are defined in Version 3 using this new mechanism. They
work fully in Java, and are serialized or transported to non-Java frameworks as ordinary CAS
objects.

Semi-built-in means that the JCas cover classes for these are defined as part of the core Java classes,
but the types themselves are not "built-in". They may be added to any tyupe system by importing
them by name using the import statement:

<import name="org.apache.uima.semibuiltins"/>

If you have a Java project whose classpath includes uimaj-core, and you run the Component
Descriptor Editor Eclipse plugin tool on a descriptor which includes a type system, you can
configure this import by selecting the Add on the Import type system subpanel, and import by
name, and selecting org.apache.uima.semibuiltins. (Note: this will not show up if your project
doesn’t include uimaj-core on its build path.)

7.2.1. FSArrayList

org.apache.uima.jcas.cas.FSArrayList is like the current FSArray, except that it implements the List
API and supports adding to the array, with automatic resizing, like an ArrayList in Java. It is
implemented internally using a Java ArrayList.

The CAS data form is held in a plain FSArray feature.

The equals() method is true if both FSArrayList objects have the same size, and contents are equal
item by item. The list of supported operations includes all of the operations of the Java List
interface. This object also includes the select methods, so it can be used as a source for the select
framework.

7.2.2. IntegerArrayList

org.apache.uima.jcas.cas.IntegerArrayList is like the current IntegerArray, except that it
implements the List API and supports adding to the array, with automatic resizing, like an ArrayList
in Java.

39

The CAS data form is held in a plain IntegerArray feature.

The equals() method is true if both IntegerArrayList objects have the same size, and contents are
equal item by item. The list of supported operations includes a subset of the operations of the Java
List interface, where certain values are changed to Java primitive ints. To support the Iterable
interface, there is a version of iterator() where the result is "boxed" into an Integer. For efficiency,
there’s also a method intListIterator, which returns an instance of IntListIterator, which permits
iterating forwards and backwards, without boxing.

7.2.3. FSHashSet and FSLinkedHashSet

org.apache.uima.jcas.cas.FSHashSet and org.apache.uima.jcas.cas.FSLinkedHashSet store Feature
Structures in a (Linked) HashSet, using whatever is defined as the Feature Structure’s equals and
hashcode.

You may customize the particular equals and hashcode by creating a
wrapper class that is a subclass of the type of interest which forwards to the
underlying Feature Structure, but has its own definition of equals and
hashcode.

The CAS data form is held in an FSArray consisting of the members of the set.

If you want a predictable iteration order, use FSLinkedHashSet instead of FSHashSet.

7.2.4. Int2FS Int to Feature Structure map

Some applications find it convenient to have a map from ints to Feature Structures. In UIMA V2,
they made use of the low level CAS APIs that allowed getting an Feature Structure from an int id
using ll_getFSForRef(int).

In v3, use of the low level APIs in this manner can be enabled, but is discouraged, because it
prevents garbage collection of non-reachable Feature Structures.

org.apache.uima.jcas.cas.Int2FS<T> maps from ints to Feature Structures of type T. This provides
an alternative way to have int → FS maps, under user control of what exactly gets added to them,
supporting removes and clearing, under application control

The iterator() method returns an Iterator over IntEntry<T> objects - these are like java Entry<K, V>
objects except the key is an int.

7.3. Design for reuse
While it is possible to have a single custom JCas class implement multiple Java Objects, this is
typically not a good design practice, as it reduces reusability. It is usually better to implement one
custom Java object per JCas class, with an associated UIMA type, and have that as the reusable
entity.

40

Chapter 8. Logging
Logging has evolved; two major changes now supported by V3 are

• using a popular open-source standard logging facade, SLF4j, that can at run time discover and
hook to a user specified logging framework.

• Support for both old-style and new style substitutable parameter specification.

For backwards compatibilit, V3 retains the existing V2 logging facade, so existing code will continue
to work. The APIs have been augmented by the methods available in the SLF4j Logger API, plus the
Java 8 enabled APIs from the Log4j implementation that support the Supplier Functional Interface.

The old APIs support messages using the standard Java Util Logging style of writing substitutable
parameters using an integer, e.g., {0}, {1}, etc. The new APIs support messages using the modern
substitutable parameters without an integer, e.g. {}.

The implementation of this facade in V2 was the built-in-to-Java (java.util) logging framework. For
V3, this is changed to be the SLF4j facade. This is an open source, standard facade which allows
deferring until deployment time, the specific logging back end to use.

If, at initialization time, SLF4J gets configured to use a back end which is either the built-in Java
logger, or Log4j-2, then the UIMA logger implementation is switched to UIMA’s implementation of
those APIs (bypassing SLF4j, for efficiency).

The SLF4j and other documentation (e.g., https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/
index.html for log4j-2) describe how to connect various logging back ends to SLF4j, by putting
logging back-end implementations into the classpath at run time. For example, to use the back end
logger built into Java, you would include the slf4j-jdk14 Jar. This Jar is included in the UIMA binary
distribution, so that out-of-the-box, logging is available and configured the same as it was for V2.

The Eclipse UIMA Runtime plugin bundle excludes the slf4j api Jar and back ends, but will "hook
up" the needed implementations from other bundles.

8.1. Logging Levels
There are 2 logging level schemes, and there is a mapping between them. Either of them may be
used when using the UIMA logger. One of the schemes is the original UIMA v2 level set, which is the
same as the built-in-to-java logger levels. The other is the scheme adopted by SLF4J and many of its
back ends.

Log statements are "filtered" according to the logging configuration, by Level, and sometimes by
additional indicators, such as Markers. Levels work in a hierarchy. A given level of filtering passes
that level and all higher levels. Some levels have two names, due to the way the different logger
back-ends name things. Most levels are also used as method names on the logger, to indicate
logging for that level. For example, you could say aLogger.log(Level.INFO, message) but you can
also say aLogger.info(message)). The level ordering, highest to lowest, and the associated method
names are as follows:

41

https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html
https://logging.apache.org/log4j/2.x/log4j-slf4j-impl/index.html

• SEVERE or ERROR; error(…)

• WARN or WARNING; warn(…)

• INFO; info(…)

• CONFIG; info(UIMA_MARKER_CONFIG, …)

• FINE or DEBUG; debug(…)

• FINER or TRACE; trace(…)

• FINEST; trace(UIMA_MARKER_FINEST, …)

The CONFIG and FINEST levels are merged with other levels, but distinguished by having Markers. If
the filtering is configured to pass CONFIG level, then it will pass the higher levels (i.e., the
INFO/WARN/ERROR or their alternative names WARNING/SEVERE) levels as well.

8.2. Context Data
Context data is kept in SLF4j MDC maps; there is a separate map per thread. This information is set
before calling Annotator’s process or initialize methods. The following table lists the keys and the
values recorded in the contexts; these can be retrieved by the logging layouts and included in log
messages.

Because the keys for context data are global, the ones UIMA uses internally are prefixed with
"uima_".

Key Name Description

uima_annotator the annotator implementation name.

uima_annotator_context_name the fully qualified annotator context name
within the pipeline. A top level (not contained
within any aggregate) annotator will have a
context of "/".

uima_root_context_id A unique id representing the pipeline being run.
This is unique within a class-loader for the
UIMA-framework.

uima_cas_id A unique id representing the CAS being
currently processed in the pipeline. This is
unique within a class-loader for the UIMA-
framework.

8.3. Markers used in UIMA Java core logging

NOTE Not (yet) implemented; for planning purposes only.

8.4. Defaults and Configuration
By default, UIMA is configured so that the UIMA logger is hooked up to the SLF4j facade, which may

42

or may not have a logging back-end. If it doesn’t, then any use of the UIMA logger will produce one
warning message stating that SLF4j has no back-end logger configured, and so no logging will be
done.

When UIMA is run as an embedded library in other applications, slf4j will use those other
application’s logging frameworks.

Each logging back-end has its own way of being configured; please consult the proper back-end
documentation for details.

For backwards compatibility, the binary distribution of UIMA includes the slf4j back-end which
hooks to the standard built-in Java logging framework, so out-of-the-box, UIMA should be
configured and log by default as V2 did.

8.4.1. Throttling logging from Annotators

Sometimes, in production, you may find annotators are logging excessively, and you wish to throttle
this. But you may not have access to logging settings to control this, perhaps because UIMA is
running as a library component within another framework. For this special case, you can limit
logging done by Annotators by passing an additional parameter to the UIMA Framework’s
produceAnalysisEngine API, using the key name
AnalysisEngine.PARAM_THROTTLE_EXCESSIVE_ANNOTATOR_LOGGING and setting the value to an Integer
object equal to the the limit. Using 0 will suppress all logging. Any positive number allows that
many log records to be logged, per level. A limit of 10 would allow 10 Errors, 10 Warnings, etc. The
limit is enforced separately, per logger instance.

NOTE
This only works if the logger used by Annotators is obtained from the Annotator
base implementation class via the getLogger() method.

43

Chapter 9. Migrating to UIMA Version 3

9.1. Migrating: the big picture
Although UIMA V3 is designed to be backwards compatible with UIMA V2, there are some
migration steps needed. These fall into two broad use cases:

• if you have an existing UIMA pipeline / application you wish to upgrade to use V3

• if you are "consuming" the Maven artifacts for the core SDK, as part of another project

9.2. How to migrate an existing UIMA pipeline to V3
UIMA V3 is designed to be binary compatible with existing UIMA V2 pipelines, so compiled and/or
JAR-ed up classes representing a V2 pipeline should run with UIMA v3, with three changes:

• Java 8 is required. (If you’re already using Java 8, nothing need be done.)

• Any defined JCas cover classes must be migrated or regenerated, and used instead. (If you do
not define any JCas classes or don’t use JCas in your pipeline, then nothing need be done.) A
quick way to do this is to create a Jar with the migrated JCas classes, and put it into the classpath
ahead of the other JCas class definitions.

• The runtime classpath needs to include the slf4j-api Jar, and an appropriate slf4j bridging Jar,
for details, see next.

Some adjustments may need to be made to logging setup, typically by including additional Jars
(provided in the UIMA Binary distribution) in your application’s classpath. If you are using the
standard UIMA Launch scripts, this is already done. For custom application setups, insure that the
classpath includes the (now) required jar "slf4j-api-xxxx.jar" (replace xxxx with the version). If you
were using the standard UIMA based logging, to get the similar behavior, include the slf4j-jdk14-
xxxx.jar; this enables the standard Java Utility Logging facility.

Some Maven projects use the JCasGen maven plugin; these projects' JCasGen maven plugin, if
switched to UIMA V3, automatically generate the V3 versions. For proper operation, please run
maven clean install; the clean operation ought to remove the previously generated JCas class,
including the UIMA V2 xxx_Type classes. These are no longer used, and won’t compile in V3.

You can use any of the methods of invoking JCasGen to generate the new V3 versions. If using the
Eclipse plugins (i.e., pushing the JCasGen) button in the configuration editor, etc.), the V3 version of
the plugin must be the one installed into Eclipse.

If you have the source or class files, you can also migrate those using the migration tool described
in this section. This approach is useful when you’ve customized the JCas class, and wish to preserve
those customizations, while converting the v2 style to the v3 style.

9.3. Migrating JCas classes
If you have customized JCasGen classes, these can be migrated by running the migration tool, which

44

is available as a stand-alone command line tool (runV3migrateJCas.sh or …bat), or as Eclipse launch
configurations.

This tool can migrate either sets of

• Java source files (xxx.java) or

• Compiled Java class files (including those contained in JARs or PEARs)

 Usually, if you have the source code it is best to migrate the sources.
Otherwise, you can migrate the compiled classes.
The compiled classes are run through a decompiler, and then the derived sources are
migrated.

When migrating source files, you specify one or more "roots" - places in a file directory, or a single
java JCas source file (the one not ending in "_Type"). When directories are specified, the tool scans
those directories recursively (including inside Jars and PEARs), looking for JCas source files. If just
one source file is specified, it work on just that one source file. When a source file is processed, it is
copied to the output spot and migrated. The output is arranged in parallel directories (before and
after migration), for easy side-by-side comparing in a tool such as Eclipse file compare.

After checking the migration results, including comparing the files, you replace the original source
with the migrated versions. Also, the original V2 source would contain a source file for each JCas
class ending in "_Type"; these are not used in version 3 and should be deleted.

You may also migrate class files; this can be used when the source files are not available. This
option has a decompilation step, to produce the source to be migrated and requires a classpath
(passed as the migrationClasspath parameter); this classpath is used to resolve symbols during the
decompilation, and should be the classpath used when running those classes. For class files, the
migration tool attempts to compile the results and, for Jars and PEARs, to update those migrated
classes in a copy of the original packaging (meaning, within Jars or PEARs):

• The classesRoots are used to locate .class files, perhaps within Jars and PEARs.

• These are decompiled, using special versions of the migrateClasspath.

• The resultant sources are migrated.

• The migrated sources are compiled.

• If the original classes came from Jars or PEARs, copies of these are made with the migrated
classes replaced.

When scanning directories from source or class roots, if a Jar or a PEAR is encountered, it is
recursively scanned.

When migrating from compiled classes:

• The class is decompiled, and the resulting source is migrated.

• The next 2 steps are skipped if no Java compiler is available. A compiler is available if the
migrate utility is being run using a JDK (as opposed to a JRE version of Java).

45

• The migrated classes are compiled. During this processes, the classpath used is the same as the
decompile classpath, except that the uima-core Jar for version 3 (from the classpath used to run
the migration tool) is prepended so that the migrated version can be compiled.

• Finally, if the original "packaging" of the class files is a Jar or PEAR, it is copied and updated
with the migrated classes (provided there was no compile error).

The results of the migration include the migrated files, a set of logs, and for classesRoots: the
compiled classes, and repackaging of them into copies of original Jars and/or PEARs. The migration
operation is summarized in the console output, detailing anything that might need inspection to
verify the migration was done correctly.

If all is OK, the migration will say that it "finished with no unusual
conditions", at the end.

To complete the migration, fix any reported issues that need fixing, and then update your UIMA
application to use these classes/Jars/PEARs in place of the version 2 ones.

The actual migration step is a source-to-source transformation, done using a parse of the source
files. The parts in the source which are version 2 specific are replaced with the equivalent version 3
code. Only those parts which need updating are modified; other code and comments which are part
of the source file are left unchanged. This is intended to preserve any user customization that may
have been done.

NOTE
After running the tool, it is important to examining the console output and logs. You
can confirm that the migration completed without any unusual conditions, or, if
something unusual was encountered, you can take corrective action.

9.3.1. Running the migration tool

The tool can be run as a stand-alone command, using the launcher scripts runV3migrateJCas; there
are two versions of this — one for windows (ending it .bat) and one for linux / mac (ending in .sh).
If you run this without any arguments, it will show a brief help for the arguments.

There are also a pair of Eclipse launch configurations (one for migrating source file(s), the other for
compiled classes and JARs and PEARs), which are available if you have the uimaj-examples project
(included in the binary distribution of UIMA) in your Eclipse workspace.

Using Eclipse to run the migration tool

There are two Eclipse launch configurations; one works with source code, the other with compiled
classes or Jars or PEARs. The launch configurations are named:

• UIMA Run V3 migrate JCas from sources roots

• UIMA Run V3 migrate JCas from classes roots

When running from class directory roots, the classes must not have compile errors, and may
contain Jars and PEARs. Both launchers write their output to a temporary directory, whose name is
printed in the Eclipse console log.

46

To use the Eclipse launcher to migrate from source code,

• First select the eclipse project containing the source code to transform; this project’s "build
path" will also supply the classpath used during migration.

Alternatively, you may select just one source file to migrate.

• run the migrate-from-sources launcher.

This will scan the directory tree of the project, looking for source files which are JCas files, and
migrate them, or alternatively, just work on the single selected source file. No existing files are
modified; everything is written to the output directory.

To use the launcher for compiled code,

• First select the eclipse project that provides the classpath for the compiled code. This is required
for proper "decompiling" of the classes and recompiling the transformed results.

• The launcher will additionally prompt you for another directory which the migration tool will
use as the top of a tree to scan for compiled Java JCas classes to be migrated.

Running from the command line

Command line: Specifying input sources

Input is specified using these arguments:

"-sourcesRoots"

a list of one or more directories, separated by the a path separator character (";" for Windows, ":"
for others), or a single source file

Migrates each candidate source file found in any of the file tree roots, skipping over non-JCas
classes.

"-classesRoots"

a list of one or more directories containing class files or Jars or PEARs, separated by the a path
separator character (";" for Windows, ":" for others).

Decompiles, then migrates each candidate class file found in any of the file tree roots (skipping
over non-JCas classes). You can specify either of these, but not both.

Command line: Specifying a classpath for the migration

When migrating from compiled classes, a classpath is required to locate and decompile the JCas
classes to be migrated. This classpath should include the JCas classes to be decompiled. The
compiled classes must not have compile errors.

When migrating from sourcesRoots, this argument is required only if the JCas classes have
references to other non-migrated classes (other than core UIMA classes). For example, if your JCas
class had a reference to a user defined Utility class, that would need to be in the classpath. For
plain, non-customized JCas classes, this argument is unnecessary.

47

To specify this parameter, use the argument -migrateClasspath. The Eclipse launcher "UIMA run V3
migrate JCas from classes roots" sets this argument using the selected Eclipse project’s classpath.
When migrating within a PEAR, the migration tool automatically adds the classpath specified by the
PEAR (if any) to the classpath.

Handling duplicate definitions

Sometimes, a classpath or directory tree may contain multiple instances of the same JCas class.
These might be identical, or they might be different versions.

The migration utility handles this by migrating each instance. The migrated forms are stored in the
output directory prefixed by the root-id (see above), as the parent directory. The different versions
can then be conveniently compared using tooling such as Eclipse’s file compare.

9.3.2. Understanding the reports

The output directory contains a logs directory with additional information. A summary is also
written to System.out.

Each file translated has both a v2 source and a v3 source. When the input is ".class" files, the v2
source is the result of the decompilation step, prior to any migration.

The process of scanning directories to find JCas class to migrate may come across multiple instances
of the same class. There are two subcases:

• The instances are the same.

• The instances are different (two non-identical definitions for the same class). Sometimes these
arise when migrating from compiled classes, where the compilation was done by different
versions of the Java compiler, and the resulting decompilations are logically equal but have
some fields or methods in a different order.

This diagram illustrates some of the potentials for identical and non-identical duplicate definitions
for the same classname, that the tool may encounter. The blue boxes represent ordinary file
directories or Jars, and the other boxes with labels Cn1 and Cn2 represent the definitions for a
classes named Cn1 and Cn2; the different colors represent non-identical definitions, as an example.
Note that a definition for a class might appear sometimes not within a Jar (or a PEAR, not shown
here), as well as with that.

48

 The migration tool allows for all of these variants.
It will migrate all versions, and will (when migrating from compiled Jars and PEARs)
compile and reassemble these.

The output directories prefix the package/classname holding the source code with a prefix of "a0",
"a1", etc. The "a" stands for alternative, and the 0 is for the first alternative, and the 1, 2, … are for
other non-equal alternatives.

When the migration is run from compiled classes, then, if possible, the resulting migrated classes
are recompiled and if from Jars or PEARs, reassembled into copies of those artifacts. The
compilation for the same classname, with the same sourcecode, could be different for different
containers because each compilation is done with that container’s classpath (e.g. Jar or Pear) and
with respect to the compilation units of that container.

Because of this, the compiled results for a given source instance, are done separately, and kept in
output directories, indexed additionally by the container number, as "c0", "c1", … . A list of all
container numbers and the migrated classes within those containers, is printed out to enable
correlating these by hand when necessary.

49

The overall directory output directory tree looks like:

Directory structure, starting at -outputDirectory
 converted/
 v2/
 a0/pkg/name.../Classname.java
 /Classname2.java etc.
 a1/pkg/name.../Classname.java if there are multiple
 different versions
 ...
 v3/
 a0/pkg/name.../Classname.java
 /Classname2.java etc.
 a1/pkg/name.../Classname.java if there are multiple
 different versions
 ...

 v3-classes/ for Jars and PEARs, the compiled class
 // xyz is the path in the container to the
 // start of the pkg/name.../Classname.class
 // the "a0", "a1", ... is extra but serves to
 // identify which alternative of the source
 23/a0/xyz/pkg/name.../Classname.class
 33/a0/xyz/pkg/name.../Classname.class
 42/a0/xyz/pkg/name.../Classname.class
 ...

 pears/
 // xyz_updated_pear_copy is the path
 // relative to the container, of the PEAR
 33/xyz_updated_pear_copy.pear
 ...

 jars/
 // xyz_updated_jar_copy is the path
 // relative to the container, of the Jar
 42/xyz_updated_jar_copy.jar
 ...

 not-converted/

 logs/
 processed.txt
 failed.txt
 skippedBuiltins.txt
 nonJCasFiles.txt
 workaroundDir.txt
 deletedCheckModified.txt
 manualInspection.txt
 pearFileUpdates.txt

50

 jarFileUpdates.txt

 ...

The converted subtree holds all the sources and migrated versions that were successfully migrated.
The not-converted subtree hold the sources that failed in some way the migration. The logs contain
many kinds of entries for different issues encountered:

processed.txt

List of successfully processed classes

failed.txt

List of classes that failed to migrate

skippedBuiltins.txt

List of classes representing built-ins that were skipped. These need manual inspection to see
how to merge with new v3 built-ins.

NonJCasFiles.txt

List of files that were thought to be JCas classes but upon further analysis appear to not be.
These need manual inspection to confirm.

deletedCheckModified.txt

List of class where a version 2 if statement doing the "featOkTst" was apparently modified. In the
migrated code, this statement was deleted, perhaps incorrectly. These need manual inspection to
confirm.

manualInspection.txt

List of files where the migration found a get or set method, where the version 2 code was
accessing a casFeatCode with the feature name not matching. These need manual inspection.

jarsFileUpdates.txt

List of Jar files and classes which were replace in them.

pearsFileUpdates.txt

List of Pear files and classes which were replace in them.

9.3.3. Examples

Run the command line tool:

cd $UIMA_HOME

bin/runV3migrateJCas.sh

 -migrateClasspath /home/me/myproj/xyz.jar:$UIMA_HOME/lib/uima-core.jar

 -classesRoots /home/me/myproj/xyz.jar:/home/me/myproj/target/classes

51

 -outputDirectory /temp/migratejcas

Run the Eclipse launcher:

First, make sure you’ve installed the V3 UIMA plugins into Eclipse!

Startup an Eclipse workspace containing the project
with JCas source files to be migrated.

Select the Java project with the JCas sources to be migrated.

Eclipse -> menu -> Run -> Run configurations
 Use the search box to find
 "UIMA run V3 migrate JCas from sources" launcher.

Please read the console output summarization to see where the output went, and about any
conditions found during migration which need manual inspection and fixup.

9.4. Consuming V3 Maven artifacts
Projects may have tests which write to the UIMA log. Because V3 switched to SLF4J as the default
logger, unless SLF4J can find an adapter to some back-end logger, it will issue a message and
substitute a "NO-OP" back-end logger. If your test cases depend on having the V2 default logger
(which is the one built into Java), you need to add a "test" dependency that specifies the SLF4J-to-
JDK14 adapter to your POM. Here’s the xml for that:

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>1.7.24</version> <!-- or some version you need -->
 <scope>test</scope>
</dependency>

52

Chapter 10. PEAR support
PEARs continue to be supported in Version 3, with the same capabilities as in version 2. Here’s a
brief review.

PEARs are both a packaging facility, and an isolation facility. The packaging facility allows putting
together into one PEAR file all the parts needed for a particular (reusable) UIMA pipeline, including
annotators and other data resources, and a classpath to use. PEARs are loaded using special class
loaders that load first from whatever classpath is specified by the PEAR; this serves to isolate
dependencies and insure that the PEAR makes use of whatever versions of classes it depends on
(and specifies in its classpath).

PEARs establish a boundary within a UIMA pipeline — annotator code is running either inside a
PEAR, or not. Note that PEARs cannot be nested. The CAS, flowing through a pipeline, is
dynamically updated with the current PEAR context (if any).

10.1. JCas issues
JCas classes defining Java implementations for UIMA Types may be defined within a PEAR. These
are loaded using the isolating Classloader, just like all the other PEAR resources. As a result, this
may cause some issues if the same JCas class is also defined outside the PEAR boundary, and loaded
with the normal UIMA classloader. The result of having the same JCas class both on the PEAR
classloader and outside that classloader will be that Java will have both classes loaded, and code
within the PEAR will be linked with one of them, and code outside the PEAR will be linked with the
other.

Sometimes, this is exactly what you might want. For example, you might have in the pear, a special
JCas definition of a UIMA type "Token" which the PEAR uses, while you might have another JCas
definition for that same UIMA type outside of the PEAR. Note that UIMA will always merge Type
definitions from inside and outside of PEARs, when it sets up a pipeline - it merges all type
definitions found for the whole pipeline.

A consequence of having two loaded class definitions in two contexts for the same UIMA type
means that the classes have the same names, but are different (because of different loading
classloaders), and assigning one to the other in Java will produce a ClassCast exception.

Othertimes, you may not want different classes. For instance, the class definitions might be
identical, and you want to create some "Token" annotations within the PEAR, and have them used
by JCas references outside of the PEAR.

In this case, the simplest thing to do is to install the PEAR, but then update its classpath so it no
longer includes the JCas classes that came with the PEAR. When classes are not found with the
special PEAR class loader, that loader delegates to its parent, which is the normal UIMA class
loader. This action will cause the PEAR to use the identically same JCas class within the PEAR as is
used outside of the PEAR, and no Class Cast Exception issues will arise. This is the most efficient
way to run with PEARs that use JCas classes where you want to share results inside and outside of
PEARs.

53

Version 3 has special support for the case where there are different definitions of JCas classes for
the same UIMA type, inside and outside the PEAR. It does this using what are called PEAR
Trampolines. When there are multiple JCas definitions, the one defined outside of the PEAR is the
one stored internally in UIMA’s indexes and types that have references to Feature Structures.
Accessing the Feature Structures checks (by asking the CAS) to see if its in a particular PEAR context
(there may be several in one pipeline), and if so, a trampoline instance of the Feature Structure is
created / used / accessed. The trampoline instance shares internally the CAS data with the base
instance, but is a separate instance of the PEAR’s JCas class definition. This allows seamless access
both inside and outside of the PEAR context to the particular JCas class definition needed.

10.2. Custom Java Objects
Custom Java Objects may store references to Feature Structures. If it is desired to create these inside
a PEAR, and yet have the references work outside a PEAR, the implementor of these must insure
that the actual stored JCas class for a Feature Structure is the base version, not the PEAR version,
and also insure that any references are properly converted (while within a PEAR context).

Refer to the implementation of FSHashSet and FSArrayList to see what needs to be done to make
these "Pear aware".

54

Chapter 11. Migration aids
To aid migration, some features of UIMA V3 which might cause migration difficulties can be
disabled. Users may initially want to disable these, and get their pipelines working, and then over
time, re-enable these while fixing any issues that may come up, one feature at a time.

Global JVM properties for UIMA V3 that control these are described in the table below.

11.1. Properties Table
This table describes the various JVM defined properties; specify these on the Java command line
using -Dxxxxxx, where the xxxxxx is one of the properties starting with uima. from the table below.

Title Property Name & Description

Use UIMA V2 format for toString() for Feature
Structures

uima.v2_pretty_print_format

The native v3 format for pretty printing feature
structures includes an id number with each FS,
and some other minor improvements. If you
have code which depends on the exact format
that v2 UIMA produced for the toString()
operation on Feature Structures, then include
this flag to revert to that format.

Disable Type System consolidation uima.disable_typesystem_consolidation

Default: equal Type Systems are consolidated.

When type systems are committed, the resulting
Type System (Java object) is considered read-
only, and is compared to already existing Type
Systems. Existing type systems, if found, are
reused. Besides saving storage, this can
sometimes improve locality of reference, and
therefore, performance. Setting this property
disables this consolidation.

55

Enable strict type source checking uima.enable_strict_type_source_check

Default: checking whether the type actually
belongs to the index/CAS is performed but only
logs a warning, no exception.

When creating a new feature structure or when
adding or removing a feature structure to/from
an index, it is checked that the type system the
type belongs to is exactly the same instance as
the type system of the CAS it is created in or the
index it is added to. Due to the type system
consolidation feature, this should always be the
case. Setting this property causes an exception to
be thrown - otherwise a warning is logged.

Disable subtype of FSArray creation uima.disable_subtype_fsarray_creation

Default: Subtypes of FSArrays can be created
and are created when deserializing CASes.

UIMA has some limited support for typed arrays.
These are declared in type system descriptors by
including an elementType specification for a
feature whose range is FSArray. See
&uima_docs_ref; .

The XCAS and the Xmi serialization forms
serialize these as FSArray, with no element type
specification included in the serialized form. The
deserialization code, when deserializing these,
looks at the type system’s feature declaration to
see if it has an elementType, and if so, changes
the type of the Feature Structure to that type.

UIMA Version 2’s CAS API did not have the
ability to create typed FSArrays. This was added
in V3, but will be disabled if this flag is set.

Setting this flag will cause all FSArray creations
to be untyped.

56

Default CASs to support V2 ID references uima.default_v2_id_references

In version 3, Feature Structures are managed
somewhat differently from V2.

* Feature Structure creation doesn’t remember a
map from the id to the FS, so the LowLevelCas
method getFSForRef(int) isn’t supported.
(Exception: Feature Structures created with the
low level API calls are findable using this). *
Creation of Feature Structures assign "ids" as
incrementing integers. In V2, the "id" is the
address of the Feature Structure in the v2 Heap;
these ids increment by the size of the Feature
Structure on the heap. * Serialization only
serializes "reachable" Feature Structures.

When this mode is set, the behavior is modified
to emulate V2’s.

* Feature Structures are added to an id-to-
featureStructure map. * IDs are assign
incrementing by the size of what the Feature
Structure would have been in V2. * Serialization
includes unreachable Feature Structures (except
for Xmi and XCAS - because this is how V2
operates))

This property sets the default value, per CAS, for
that CAS’s ll_enableV2IdRefs mode to true. This
mode is is also programmatically settable, which
overrides this default.

For more details on how this setting operates
and interacts with the associated APIs, Section
2.4

11.2. Trading off runtime checks for speed

Title Property Name & Description

Disabling runtime feature validation uima.disable_runtime_feature_validation

Once code is running correctly, you may remove
this check for performance reasons by setting
this property.

57

Disabling runtime feature value validation uima.disable_runtime_feature_value_validation

Default: features being set into FS features
which are FSs are checked for proper type
subsumption.

Once code is running correctly, you may remove
this check for performance reasons by setting
this property.

11.3. Reporting

Title Property Name & Description

Report feature structure pinning uima.report.fs.pinning="nnn"

Default: not enabled; nnn is the maximum
number of reports to produce. If nnn is omitted,
it defaults to 10.

When enabled, this flag will cause reports to
System.out with call traces for the first nnn
instances of actions which lead to pinning
Feature Structures in memory.

Typically, this should not happen, and no-longer-
reachable Feature Structures are garbage
collected.

But some operations (such as using the CAS low
level APIs, which return integer handles
representing Feature Structures) pin the Feature
Structures, in case code in the future uses those
integer handles to access the Feature Structure.

It is recommended that code be improved over
time to use JCas access methods, instead of low-
level CAS APIs, to avoid pinning unreachable
Feature Structures. This report enables finding
those parts of the code that are pinning Feature
Structures.

58

	Apache UIMA™ - UIMA 3 User’s Guide
	UIMA 3 User’s Guide
	Chapter 1. Overview of UIMA Version 3
	1.1. What’s new in UIMA 3
	1.2. Java 8 is required

	Chapter 2. Backwards Compatibility
	2.1. JCas and non-JCas APIs
	2.1.1. Additional reserved names in the JCas generated classes

	2.2. Serialization forms
	2.2.1. Delta CAS Version 2 Binary deserialization not supported

	2.3. APIs for creating and modifying Feature Structures
	2.4. Preserving V2 ids, with low level CAS Api accessibility
	2.5. PEAR support
	2.6. toString()
	2.7. Logging configuration is somewhat different
	2.8. Type System sharing
	2.9. Some checks moved to native Java
	2.10. Some class hierarchies have been modified
	2.11. Enabling multiple versions of type systems to work with a single common JCas class

	Chapter 3. New and Extended APIs
	3.1. UIMA FSIndex and FSIterators improvements
	3.2. New Select API
	3.3. New custom Java objects in the CAS framework
	3.4. Built-in lists and arrays
	3.4.1. Built-in lists and arrays have common super classes / interfaces

	3.5. Many UIMA objects implement Stream or Collection
	3.6. Reorganized APIs
	3.7. Use of JCas Class to specify a UIMA type
	3.8. JCasGen changes
	3.8.1. JCas additional static fields

	3.9. Generics added
	3.10. Other changes

	Chapter 4. SelectFS CAS data access
	4.1. Select’s use of the builder pattern
	4.2. Sources of Feature Structures
	4.2.1. Use of Type in selection of sources
	4.2.2. Sources and generic typing

	4.3. Selection and Ordering
	4.3.1. Boolean properties
	4.3.2. Configuration for any source
	4.3.3. Configuration for any index
	4.3.4. Configuration for sort-ordered indexes
	4.3.5. Following or Preceding
	4.3.6. Bounded sub-selection within an Annotation Index
	4.3.7. Variations in Bounded sub-selection within an Annotation Index
	4.3.8. Defaults for bounded selects

	4.4. Terminal Form actions
	4.4.1. Iterators
	4.4.2. Arrays and Lists
	4.4.3. Single Items
	4.4.4. Streams

	Chapter 5. Annotation relation predicates
	Chapter 6. Type discovery via SPI
	6.1. JCas class discovery
	6.2. Type system description discovery

	Chapter 7. CAS-transported custom Java objects
	7.1. Tutorial example
	7.2. Additional semi-built-in UIMA Types for some common Java Objects
	7.2.1. FSArrayList
	7.2.2. IntegerArrayList
	7.2.3. FSHashSet and FSLinkedHashSet
	7.2.4. Int2FS Int to Feature Structure map

	7.3. Design for reuse

	Chapter 8. Logging
	8.1. Logging Levels
	8.2. Context Data
	8.3. Markers used in UIMA Java core logging
	8.4. Defaults and Configuration
	8.4.1. Throttling logging from Annotators

	Chapter 9. Migrating to UIMA Version 3
	9.1. Migrating: the big picture
	9.2. How to migrate an existing UIMA pipeline to V3
	9.3. Migrating JCas classes
	9.3.1. Running the migration tool
	Using Eclipse to run the migration tool
	Running from the command line
	Command line: Specifying input sources
	Command line: Specifying a classpath for the migration

	Handling duplicate definitions

	9.3.2. Understanding the reports
	9.3.3. Examples

	9.4. Consuming V3 Maven artifacts

	Chapter 10. PEAR support
	10.1. JCas issues
	10.2. Custom Java Objects

	Chapter 11. Migration aids
	11.1. Properties Table
	11.2. Trading off runtime checks for speed
	11.3. Reporting

