Apache UIMA™ - Tools

Apache UIMA™ Development Community

Version 3.6.1

Copyright © 2006, 2021 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

License and Disclaimer

The ASF licenses this documentation to you under the Apache License, Version 2.0 (the "License");
you may not use this documentation except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents are
distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Trademarks

All terms mentioned in the text that are known to be trademarks or service marks have been
appropriately capitalized. Use of such terms in this book should not be regarded as affecting the
validity of the the trademark or service mark.

http://www.apache.org/licenses/LICENSE-2.0

UIMA Tools

1. Component Descriptor Editor User’s Guide
1.1. Launching the Component Descriptor Editor
1.2. Creating a New AE Descriptor
1.3. Pages within the Editor
1.3.1. Adjusting the display of pages
1.4. Overview Page
1.4.1. Implementation Details
1.4.2. Runtime Information
1.4.3. Overall Identification Information
1.5. Aggregate Page
1.5.1. Adding components more than once
1.5.2. Adding or Removing components in a flow
1.5.3. Adding remote Analysis Engines
1.5.4. Connecting to Remote Services
1.5.5. Finding Analysis Engines by searching
1.5.6. Component Engine Flow
1.6. Parameters Definition Page
1.6.1. Using groups
1.6.2. Adding or Editing a Parameter
1.6.3. Parameter declarations for Aggregates
1.7. Parameter Settings Page
1.8. Type System Page
1.8.1. Exporting
1.9. Capabilities Page
1.9.1. Sofa (and view) name mappings
1.10. Indexes Page
1.11. Resources Page
1.11.1. Binding
1.11.2. Resources with Aggregates
1.11.3. Imports and Exports
1.12. Source Page
1.12.1. Source formatting — indentation
1.13. Creating a Self-Contained Type System
1.14. Creating Other Descriptor Components

2. Collection Processing Engine Configurator User’s Guide

2.1. Limitations of the CPE Configurator
2.2. Starting the CPE Configurator
2.3. Selecting Component Descriptors

© © o0 00 00 00 N U a1 U,

B R R R W W W W W W W W WNN NN R R R R R R R e
W DN N N O 0 0 00 0 3 0 U N O N O Rk O O 00 0 U b i b N DN -

2.4. Running a Collection Processing Engine
2.5. The File Menu
2.6. The Help Menu

3. Document Analyzer User’s Guide

3.1. Starting the Document Analyzer
3.2. Running an AE

3.3. Viewing the Analysis Results

3.4. Configuring the Annotation Viewer
3.5. Interactive Mode

3.6. View Mode

4. Annotation Viewer
5. CAS Visual Debugger

5.1. Introduction
5.1.1. Running CVD
5.1.2. Command line parameters
5.2. Error Handling
5.3. Preferences File
5.4. The Menus
5.4.1. The File Menu
5.4.2. The Edit Menu
5.4.3. The Run Menu
5.4.4. The tools menu
View Type System
Show Selected Annotations
5.5. The Main Display Area
5.5.1. The Status Bar
5.5.2. Keyboard Navigation and Shortcuts

6. Eclipse Analysis Engine Launcher’s Guide

6.1. Creating an Analysis Engine launch configuration

6.2. Launching an Analysis Engine

7. Cas Editor User’s Guide

7.1. Introduction
7.2. Launching the Cas Editor
7.2.1. Specifying a type system
7.3. Annotation editor
7.3.1. Editor
7.3.2. Configure annotation styling
7.3.3. CAS view support
7.3.4. Outline view
7.3.5. Edit Views

7.3.6. FeatureStructure View

44
44
45
46
46
46
47
51
52
52
54
35
35
35
56
56
57
57
57
60
60
61
61
62
63
66
67
68
68
69
70
70
70
70
71
71
73
75
75
76
76

7.4. Implementing a custom Cas Editor View 77

7.4.1. Annotation Status View Sample 78
8.]JCasGen User’s Guide 80
8.1. Running stand-alone without Eclipse 81
8.2. Running stand-alone with Eclipse 81
8.3. Running within Eclipse 82
8.4. Using the jcasgen-maven-plugin 83

9. UIMA Plugin for bnd 85
10. PEAR Packager User’s Guide 86
10.1. Using the PEAR Eclipse Plugin 86
10.1.1. Add UIMA Nature to your project 86
10.1.2. Using the PEAR Generation Wizard 88

The Component Information page 88

The Installation Environment page 89

The PEAR file content page 90

10.2. Using the PEAR command line packager 91
11. The PEAR Packaging Maven Plugin 93
11.1. Specifying the PEAR Packaging Maven Plugin 93
11.2. Automatically including dependencies 95
11.3. Running from the command line 96
12. PEAR Installer User’s Guide 98
13. PEAR Merger User’s Guide 100
13.1. Details of the merging process 100
13.2. Testing and Modifying the resulting PEAR 101
13.3. Restrictions and Limitations 101

Chapter 1. Component Descriptor Editor
User’s Guide

The Component Descriptor Editor is an Eclipse plug-in that provides a forms-based interface for
creating and editing UIMA XML descriptors. It supports most of the descriptor formats, except the
Collection Processing Engine descriptor, the PEAR package descriptor and some remote deployment
descriptors.

1.1. Launching the Component Descriptor Editor

Here’s how to launch this tool on a descriptor contained in the examples. This presumes you have
installed the examples as described in the SDK Installation and Setup chapter.

» Expand the uimaj-examples project in the Eclipse Navigator or Package Explorer view

» Within this project, browse to the file descriptors/tutorial/ex1/RoomNumberAnnotator.xml.

* Right-click on this file and select Open With — Component Descriptor Editor. (If this option is not
present, check to make sure you installed the plug-ins. The EMF plugin is also required.)

* This should open a graphical editor and display the contents of the RoomNumberAnnotator
descriptor.

1.2. Creating a New AE Descriptor

A new AE descriptor file may be created by selecting the File ~ New - Other... menu. This brings up
the following dialog:

oas.pdf#ugr.ovv.eclipse_setup.installation

Select a wizard

Wizards:

== UIMA 2y
B Analysis Engine Descriptor File 3
e % Type System Descriptor File
[=1-[z= Collection Processing Components
. B Cas Consumer Descriptor File
- B Cas Initislizer Descriptor File
. B Collection Reader Descriptor File
[=-[z= Importable Parts
Ef External Resource and Bindings (Resource Manager Configuration) Descriptor File
- B Flow Controller Descriptor File
- [BF Index Collection Descriptor File
Type Priorities Descriptor File E]

ﬂ 111l "ll
e I Mext = I Fifist I Cancel |

Figure 1. Screenshot of selecting new UIMA component in Eclipse

If the user then selects UIMA and Analysis Engine Descriptor File, and clicks the Next button, the

following dialog is displayed. We will cover creating other kinds of components later in the
documentation.

' New Analysis Engine Descriptor File &
Analysis Engine (AE) Descriptor File
Create a new AE Descriptor File

Parert Folder: Itest

Eile name: IEIE Descriptor xm|

< Back | [dewt | Finish I Cancel

Figure 2. Screenshot of selecting new UIMA component in Eclipse after pushing Next

After entering the appropriate parent folder and file name, and clicking Finish, an initial AE
descriptor file is created with the given name, and the descriptor is opened up within the
Component Descriptor Editor.

At this point, the display inside the Component Descriptor Editor is the same whether one started
by creating a new AE descriptor, as in the preceding paragraph, or one merely opened a previously

created AE descriptor from, say, the Package Explorer view. We show a previously created AE in the
figure below:

27 ReaExAnnotator,sxml 57 ! = =
RegExAnnotator, xml

Overview

Implementation Language) Cjc++ & Java
Engine Type & Primitve O Agaregate

+ Runtime Information

This section describes information about how to run this component
updates the CAS

multiple deployment allowed
[returns new artifacts

Mame of the Java dass file com.ibm,uima.examples. cas. RegExAnnotator

Browse

+ Owerall Identification Information

This section specifies the basic identification information for this descriptor
Mame RegEx Annotator

Wersion

Vendor

Description: | Matches regular expressions in document text,

Civerview : Aggregate | Parameters | Parameter Settings | Type System | Capabilities | Indexes | Resources | Source |

Figure 3. Screenshot of CDE showing overview page

To see all the information shown in the main editor pane with less scrolling, double click the title
tab to toggle between the “full screen” and normal views.

It is possible to set the Component Descriptor Editor as the default editor for all .xml files by going
to Window - Preferences, and then selecting File Associations on the left, and *xml on the right,
and finally by clicking on Component Descriptor Editor, the Default button and then OK. If AE and
Type System descriptors are not the primary .xml files you work with within the Eclipse
environment, we recommend not setting the Component Descriptor Editor as your default editor
for all .xml files. To open an .xml file using the Component Descriptor Editor, if the Component
Descriptor Editor is not set as your default editor, right click on the file in the Package Explorer, or
other navigational view, and select Open With - Component Descriptor Editor. This choice is
remembered by Eclipse for subsequent open operations.

1.3. Pages within the Editor

The Component Descriptor Editor follows a standard Eclipse paradigm for these kinds of editors.
There are several pages in the editor; each one can be selected, one at a time, by clicking on the
bottom tabs. The last page contains the actual XML source file being edited, and is displayed as
plain text.

The same set of tabs appear at the bottom of each page in the Component Descriptor Editor. The
Component Descriptor Editor uses this “multi-page editor” paradigm to give the user a view of
conceptually distinct portions of the Descriptor metadata in separate pages. At any point in time the
user may click on the Source tab to view the actual XML source. The Component Descriptor Editor

is, in a way, just a fancy GUI for editing the XML. The tabs provide quick access to the following
pages: Overview, Aggregate, Parameters, Parameter Settings, Type System, Capabilities, Indexes,
Resources, and Source. We discuss each of these pages in turn.

1.3.1. Adjusting the display of pages

Most pages in the editor have a “sash” bar. This is a light gray bar which separates sub-sections of
the page. This bar can be dragged with the mouse to adjust how the display area is split between
the two sash panes. You can also change the orientation of the Sash so it splits vertically, instead of
horizontally, by clicking on the small icons at the top right of the page that look like this:

(k|

HERE=

Figure 4. Changing orientation of two window split

All of the sections on a page have subtitles, with an indicator to the left which you can click to
collapse or expand that particular section. Collapsing sections can sometimes be useful to free up
screen area for other sections.

1.4. Overview Page

Normally, the first page displayed in the Component Descriptor Editor is the Overview page (the
name of the page is shown in the GUI panel at the top left). If there is an error reading and parsing
the source, the Source page is shown instead, giving you the opportunity to correct the problem. For
many components, the Overview page contains three sections: Implementation Details, Runtime
Information and overall Identification Information.

1.4.1. Implementation Details

In the Implementation Details section you specify the Implementation Language and Engine Type.
There are two kinds of Engines: Aggregate, and non-Aggregate (also called Primitive). An Aggregate
engine is one which is composed of additional component engines and contains no code, itself.
Several of the pages in the Component Descriptor Editor have different formats, depending on the
engine type.

1.4.2. Runtime Information

Runtime information is only applicable for primitive engines and is disabled for aggregates and
other kinds of descriptors. This is where you specify the class name of the annotator
implementation, if you are doing a Java implementation, or the C++ shared object or dll name, if
you are doing a C++ implementation. Most Analysis Engines will specify that they update the CAS,
and that they may be replicated (for performance reasons) when deployed. If a particular Analysis
Engine must see every CAS (for instance, if it is counting the number of CASes), then uncheck the
“multiple deployment allowed” box. If the Analysis Engine doesn’t update the CAS, uncheck the
“updates the CAS” box. (Most CAS Consumers do not update the CAS, and this parameter defaults to
unchecked for new CAS Consumer descriptors).

Analysis engines are written using the CAS Multiplier APIs can create additional CASes for analysis.
To specify that they do this, check the returns new artifacts.

tug.pdf#-ugr.tug.cm

1.4.3. Overall Identification Information

The Name should be a human-readable name that describes this component. The Version, Vendor,
and Description fields are optional, and are arbitrary strings.

1.5. Aggregate Page

For primitive Analysis Engines, Flow Controllers or Collection Processing components, the
Aggregate page is not used. For aggregate engines, the page looks like this:

[NamesAndPersoniTites_TAEml 0 =8
HamesAndPersonTitles TAE.wnl

Aggregate Delegates and Flows

= Component Engines = Component Engine Flow

Thee folloveng engines are induded in this aggregate. Choose & fiow type and describe the sxscubon order of
PO ENQINES.

Delegate |Kﬂ'“ﬂ'ﬂe | The table shows the delegates using thesr key names.

Ewmﬁmmm,ﬁﬁmﬁr.m PersonTitleAnnotator

Flow Kind: | Fioed Flow
EWEW_REELTE-M HameRecograper : T

[y ramer ecogrizer
[0 personTideAnnotator

il L
mm U]

[edd.. | [eonc]

Overview | Aggregste | Parameters | Parameter Setm;:.' Tmsmcmw{eﬂ:m'mm

Figure 5. CDE Aggregate page

On the left we see a list of component engines, and on the right information about the flow. If you
hover the mouse over an item in the list of component engines, that engine’s description meta data
will be shown. If you right-click on one of these items, you get an option to open that delegate
descriptor in another editor instance. Any changes you make, however, won’t be seen until you
close and reopen the editor on the importing file.

Engines can be added to the list on the left by clicking the Add button at the bottom of the
Component Engine section. This brings up one of the following two dialogs:

Select one or more component engines from the workspace:

= examples

.Casspath

Jproject

bin

data

deploy

descriptors
MixedAggregate, xml
analysis_engine
Cas_consumer

miE

[-]

- B -

cas_multiplier h’ _]

rallartinn miraraccinaannins
(<] I | [2]

OR

[Eruwse the file system...

) Import by Name
{E} Import By Location

Add selected AEz to end of flow

QK. Cancel

Figure 6. Adding an Analysis Engine to an Aggregate, by location

This dialog lets you select a descriptor from your workspace, or browse the file system to select a
descriptor.

Or, if you have selected to import by name, this dialog is shown:

10

Select one or more component engines from the workspace:

by-name xml resource source of by-name resource [A]
MixedAgaregate. xml C:\a'\Edipse\3. 3\apache\examples'descriptors
analysis_engine /GovernmentOffidalRecognizer_RegEx_TAE.xml C:\a'Edipse\3. 3\apache\examples'descriptors
analysis_engine MamesAndGovernmentOfficials_TAE. xml C:\a'Edipse\3. 3\apache\examples'descriptors
analysis_engine/MamesAndPersonTitles_TAE. xml C:'\a'Edlipse\3. 3\apache\examples\descriptors
analysis_engine/PersonTitleAnnotator, xml C:'\a'Edlipse\3. 3\apache\examples\descriptors
analysis_engine/PersonTitleAnnotator_WithinMamesOnly. xmi C:'\a'Edlipse\3. 3\apache\examples\descriptors
analysis_engineRegExAnnotator, xmi C:'\a'Edlipse\3, 3\apache\examples\descriptors
analysis_engine/SimpleEmailR ecognizer_RegEx_TAE.xmi C:'\a'Edipse\3. 3\apache\examples\descriptors [v]
srmalucic amaina QirmnlablzrmaD arnanizear DanFy TAFE weal T 2B rlimeal? amasrhalavaranlacidacrrimbare

[(] 1l | [}]
OR.

() Import by Name

O Import By Location

Add zelected AEz to end of flow

Cancel

Figure 7. Adding an Analysis Engine to an Aggregate, by name

You can specify that the import should be by Name (the name is looked up using both the Project’s
class path, and DataPath), or by location. If it is by name, the dialog shows the available xml files on
the class path, to pick from. If the one you want isn’t showing, this means it isn’t on the enclosing
Eclipse Java Project’s classpath, nor on the datapath, and one of those needs to be updated to
include the path to the resource. If the name picked is com/company/prod/xyz.xml, the name in the
descriptor will be “ com.company.prod.xyz ”. The "Browse the file system..." button is disabled
when import by name is checked, because the file system is not the source of the imports - rather,
its the resources on the classpath or datapath that are.

If it is by location, the file reference is converted to a relative reference if possible, in the descriptor.

The final selection at the bottom tells whether or not the selected engine(s) should automatically be
added to the end of the flow section (the right section on the Aggregate page). The OK button does
not become activated until a descriptor file is selected.

To remove an analysis engine from the component engine list simply select an engine and click the
Remove button, or press the delete key. If the engine is already in the flow list you will be warned
that deletion will also delete the specified engine from this list.

1.5.1. Adding components more than once

Components may be added to the left panel more than once. Each of these components will be
given a key which is unique. A typical reason this might be done is to use a component in a flow
several times, but have each use be associated with different configuration parameters (different
configuration parameters can be associated with each instance).

11

1.5.2. Adding or Removing components in a flow

The button in-between the Component Engines and the Flow List, labeled >>, adds a chosen engine
to the flow list and the button labeled << removes an engine from the flow list. To add an engine to
the flow list you must first select an engine from the left hand list, and then press the >> button.
Engines may appear any number of times in the flow list. To remove an engine from the flow list,
select an engine from the right hand list and press the << button.

1.5.3. Adding remote Analysis Engines

There are two ways to add remote engines: add an existing descriptor, which specifies a remote
engine (just as if you were adding a non-remote engine) or use the Add Remote button which will
create a remote descriptor, save it, and then import it, all in one operation. The Add Remote button
enables you to easily specify the information needed to create a remote service descriptor for a
remote AE - one that runs on a different computer connected over the network. There are 3 kinds of
these: two are variants of the Service Client descriptor; the other is the UIMA-AS JMS Service
descriptor, described in the UIMA AS documentation. The Add Remote button creates an instance of
one of these descriptors, saves it as a file in the workspace, and imports it into the aggregate.

Of course, if you already have a remote service descriptor, you can add it to the set of delegates
using the Add button, just like adding other kinds of analysis engines.

After clicking on Add Remote, the following dialog is displayed:

12

ref.pdf#ugr.ref.xml.component_descriptor.service_client

i N
= Add Bemote Service w

Fill in the information about the remote service and press OK

Service kind: Anal}rsisEng.inE >
Protocol Service Type UIMA-AS JMS >
URI of service or JM5 Broker:

Endpoint Mame (JMS Service):

Binary Serialization (JM5 Service): | falze s
i Ignore Process Errors (JMS Service): false =
Key (a short mnemonic for this service): 'l

Where the generated remote descriptor file will be stored:

!l C/au/runtime-testCDE/testjmsimport/ xml

£ 5

Timecuts, in milliseconds. This is ignored for the Vinci protocol. Specify 0 to wait
forever. If not specified, a default timeout is used.

Timeout: Process:

Timeout: (JMS) Gethdeta:

Timeout: (JMS) Collection Processing Complete:

For the Vinci protocol, you can optionally specify the Host/Port for the Vinci Mame
Service

S O RT
Wi PR

missing JM5 endpoint
[¥] Add to end of flow

(7 Import by Name

(@ Import By Location

L A

Figure 8. Adding a remote client to an aggregate

To define a remote service you specify the Service Kind, Protocol Service Type, URI and Key. You
can also specify a Timeout in milliseconds, used by the JMS services, and a VNS Host and Port used
by the Vinci Service. The JMS service has additional timeouts and other parameters you may
specify. Just like when one adds an engine from the file system, you have the option of adding the
engine to the end of the flow. The Component Descriptor Editor currently only supports Vinci
services using this dialog.

Remote engines are added to the descriptor using the <import ... > syntax. The information you
specify here is saved in the Eclipse project as a file, using a generated name, <key-name>.xml, where
<key-name> is the name you listed as the Key. Because of this, the key-name must be a valid file
name. If you want a different name, you can change the path information in the dialog box.

13

1.5.4. Connecting to Remote Services

If you are using the Vinci protocol, it requires that you specify the location of the Vinci Name Server
(an IP address and a Port number). You can specify these in the service descriptor, or globally, for
your Eclipse workspace, using the Eclipse menu item: Window - Preferences... —UIMA
Preferences.

If the remote service is available (up and running), additional operations become possible. For
instance, hovering the mouse over the remote descriptor will show the description metadata from
the remote service.

1.5.5. Finding Analysis Engines by searching

The next button that appears between the component engine list and the flow list is the Find AE
button. When this button is pressed the following dialog is displayed, which allows one to search
for AEs by name, by input or output types, or by a combination of these criteria. This function
searches the existing Eclipse workspace for matching *xml descriptor source files; it does not look
inside Jar files.

=

[. iy o ¥ = ' T = ¥ i 3 ey g e 1
7 Find an Analysis Engine (AE), CAS Consumer, or Remote Service Descriptor

Specify a name pattern andjor additional constraints, and then push the Search button

Descriptor file name pattern (e.g. ab*cde):

Descriptor must specfy the input type:

Descriptor must specfy the output type:

Look in:

| All projects - I

Search I Stop ii-?!;.-rtl';l

Figure 9. Searching for an AE to add to an aggregate

The search automatically adds a “match any characters” - style () wildcard at the beginning and
end of anything entered. Thus, if person is specified for an output type, a “*person” search is
performed. Such a search would match such things as “my.namespace.person” and
“person.governmentOfficial.” One can search in all projects or one particular project. The search
does an implicit and on all fields which are left non-blank.

1.5.6. Component Engine Flow

The UIMA SDK currently supports three kinds of sequencing flows: Fixed, CapabilitylLanguageF1low,
and user-defined. The first two require specification of a linear flow sequence; this linear flow
sequence can also be read by a user-defined flow controller (what use is made of it is up to the user-
defined flow controller). The Component Engine Flow section allows specification of these items.

14

ref.pdf#ugr.ref.xml.component_descriptor.aes.aggregate.flow_constraints

The pull-down labeled Flow Kind picks between the three flow models. When the user-defined flow
is selected, the Browse and Search buttons become enabled to let you pick the flow controller XML
descriptor to import.

+ Component Engine Flow

Choose a flow type and describe the execution order of your engines.
The table shows the delegates using their key names,

Flaw Kind: | User-defined Flow |:|

Flow Controller: |../flow_controller \WhiteboardFlowController aml —
Key Mame: WhiteboardFlowContraller -
%NamEREEDgniZEF

@Persanﬂﬂe.ﬁ.nnntamr -n

Figure 10. Specifying flow control

The key name value is set automatically from the XML descriptor being imported, and enables
parameters to be overridden for that descriptor (see following sections).

The Up and Down buttons to the right in the Flow section are activated when an engine in the flow
is selected. The Up button moves the selected engine up one place in the execution order, and down
moves the selected engine down one place in the execution order. Remember that engines can
appear multiple times in the flow (or not at all).

1.6. Parameters Definition Page

There are two pages for parameters: the first one is where parameters are defined, and the second
one is where the parameter settings are configured. The first page is the Parameter Definition page
and has two alternatives, depending on whether or not the descriptor is an Aggregate or not. We
start with a description of parameter definitions for Primitive engines, CAS Consumers, Collection
Readers, CAS Initializers, and Flow Controllers. Here is an example:

15

GovernmentOfficialRecognizer_RegEx _TAExml

=

Parameter Definitions £

= Configuration Parameters

This section shows all configuration parameters defined for this engine.
[Use Parameter Groups

<Mot in any group>

Multi Opt String Mame: Patterns
Multi Opt String Mame: TypeMames AddGroup
Multi Opt String Mame: ContainingAnnotationTypes

Single Opt Boolean X0 Name: AnnotateEntireContaining&nnotation

Rernowve

F Not Used

Overview |Aggregate Parameters | Parameter 5e1:tir1gs| Type S}rstem| Capabilities| Indexes| Resourcesl 50urce|

Figure 11. Parameter Definitions - not Aggregate

The first checkbox at the top simplifies things if you are not using Parameter Groups (see the
following section for a discussion of groups). In this case, leave the check box unchecked. The main
area shows a list of parameter definitions. Each parameter has a name, which must be unique for
this Analysis Engine. The first three attributes specify whether the parameter can have a single or
multiple values (an array of values), whether it is Optional or Mandatory, and what the value type it
can hold (String, Integer, Float, and Boolean). If an external override name has been specified an
attribute of "XO" is included. See External Configuration Parameter Overrides for a discussion of
external configuration parameter overrides.

In addition to using the buttons on the right to edit this information, you can double-click a
parameter to edit it, or remove (delete) a selected parameter by pressing the delete key. Use the Add
button to add a new parameter to the list.

Parameters have an additional description field, which you can specify when you add or edit a
parameter. To see the value of the description, hover the mouse over the item, as shown in the
picture below. If the parameter has an external override name its value is included in the hover.

16

ref.pdf#ugr.ref.xml.component_descriptor.aes.external_configuration_parameter_overrides

Governm entGﬁiciaIRecogﬁizer_F‘.eg E‘.c_-TAE.me

Parameter Definitions =

= Configuration Parameters

This section shows all configuration parameters defined for this engine.
[Use Parameter Groups

a <Mot in any group>

Multi Opt String Mame: Patterns
Multi Opt String Mame: TypeMames AddGroup
Multi Opt String Mame: ContainingAnnotationTypes

. Edit.., |

[Single Opt Boolean X0 Mame: AnnotateEntireContainingAnnotation |

Rernowve

i

Set if the entire annotation is to be annotated; instead of just the
portion that matches the pattern. (ExternalOverrideMame = annotateAllContaining)

F Not Used

Overview |Aggregate Parameters | Parameter Settings | Type 5ystem| Capabilities| Indexes| Resourcesl 50urce|

Figure 12. Parameter description shown in a hover message

1.6.1. Using groups

The group concept for parameters arose from the observation that sets of parameters were
sometimes associated with different configuration needs. As an example, you might have an
Analysis Engine which needed different configuration based on the language of a document.

To use groups, you check the “Use Parameter Groups” box. When you do this, you get the ability to
add groups, and to define parameters within these groups. You also get a capability to define
“Common” parameters, which are parameters which are defined for all groups. Here is a screen
shot showing some parameter groups in use:

17

= Configuration Parameters

This section shows all corfiguration parameters defined for this enaine.
IJse Parameter Groups

il

=

o
% |m|
IHH

Defautt Group |

SearchStrategy |NDF|E

2

<Maot in any group:
|- «Common:
i Single Req Integer Mame: myMewPam?2
‘- Multti Req Boolean Mame:x
|- GROUP Mames: myMewGroup
‘o Multti Opt Float MName: 57
|- GROUP Names: myMNewGroupZ mg3

‘o Single Opt Integer

Mame: parameterinGroup?

AddGroup

ove

el

1’1 Not Used

1

|72

Overview | Aggregate | F‘ammeta‘s_i..Falamé‘-tT_!:ﬁEE}:_! Capabil. . | Indexes

Figure 13. Using parameter groups
You can see the <Common> parameters as well as two different sets of groups.

The Default Group is an optional specification of what Group to use if the parameter is not available
for the group requested.

The Search strategy specifies what to do when a parameter is not available for the group requested.
It can have the values of None, 1anguage_fallback, or default_fallback.

Groups are added using the Add Group button. Once added, they can be edited or removed, using
the buttons to the right, or the standard gestures for editing (double-clicking the item) and
removing (pressing the delete key after an item is selected). Removing a group removes all the
parameter definitions in the group. If you try and remove the <Common> group, it just removes the
parameters in the group.

Each entry for a group in the table specifies one or more group names. For example, the highlighted
entry above, specifies two groups: myNewGroup2 and mg3. The parameter definition underneath is
considered to be in both groups.

1.6.2. Adding or Editing a Parameter

When creating or modifying a parameter both a unique name and a valid type must be specified.
The Description and External Override fields are optional. The defaults for the two checkboxs
indicate a single-valued optional parameter in the example below:

18

ref.pdf#ugr.ref.xml.component_descriptor.aes.configuration_parameter_declaration

il B
= Edit Parameter g

Specify a parameter name & type

Parameter names must be unigque within this descriptor

Parameter Name ! |snnotateEntireContainingAnnotation |

Parameter Type | Boolean = |

Set if the entire annotation is to be annotated; instead of ustthe =
portion that matches the pattern,

Description:

External Cwerride | annotatefllContaining

[] Parameter is multi-valued

[] Parameter is mandatory

| ok || Ccaneel

1.6.3. Parameter declarations for Aggregates

Aggregates declare parameters which always must override a parameter setting for a component
making up the aggregate. They do this using the version of this page which is shown when the
descriptor is an Aggregate; here’s an example:

& NomesindGovemmentOfficisls_TAExm i B
) meLe refinition
« Configuration Parameters = Delegate Component Parameters
This saction shows all corfiguration parameters defined for this engine This saction shows ol delegatie companerts by ther ey names, and what
] Fatarredet Grons parameters they have
tl Diouble-cick & parameter of & group § you wand bo spaclly cvemides for these
Diefalt Group | | | perameters in this agoregate; this wil add & defaul Configuration Parmmeter in
5 Strateqy T thia Agomgiate for thal parsmster. and pet the cvemdes
e = Delegate Keéy Name: GovemmerzOficalRecognizer
= =hot n &y group > = ehlat i 2y prewn
= Muti Opt Sing Neme: Pattems l:l Muki Opt Stng Mame: Patiems
Creamdes: GovemmerdOfficisiRecogrezer Pattems: Mubl Opt Stng Hame: Typahlames
= Mulli Opt Sing Name: Typehames Multi Opt Sting Mame: ContaningAnnotation Types
COrverides: HameRacognizen Typaliamas III Single Ot Boclesn Mame: Arnctats EntreContsning:Annolafion
<Comman = Dislngate Hay Hama: NamaRecogrizer
= (ot inany groups

Snge Ot Bolean N-H'l'lt. Areotate EntireContaning.Annolation

<l 3] | Crmate Crvaenda |[Create ran-shared Gremde |

There is an additional panel shown (on the right) which lists all of the components by their key
names, and shows for each of them their defined parameters. To add a new override for one or
more of these parameters to the aggregate, select the component parameter you wish to override
and push the Create Override button (or, you can just double-click the component parameter). This
will automatically add a parameter of the same name (by default -you can change the name if you

19

like) to the aggregate, putting it into the same group(s) (if groups are being used in the component
—this is required), and setting the properties of the parameter to match those of the component (this
is required).

If the name of the parameter being added already is in use in the aggregate, and the
parameters are not compatible, a new parameter name is generated by suffixing the
name with a number. If the parameters are compatible, the selected component
parameter is added to the existing aggregate parameter, as an additional override.
If you don’t want this behavior, but want to have a new name generated in this

NOTE case, push the Create non-shared Override button instead, or hold down the “shift”
key when double clicking the component parameter.

The required / optional setting in the aggregate parameter is set to match that of the
parameter being overridden. You may want to make an optional delegate parameter
required. You can do this by changing that value manually in the source editor view.

In the above example, the user has just double-clicked the TypeNames parameter in the
NameRecognizer component. This added that parameter to this aggregate under the <Not in any
group> section — since it wasn’t part of a group.

Once you have added a parameter definition to the aggregate, you can use the buttons on the right
side of the left panel to add additional overrides or remove parameters or their overrides. You can
also remove groups; removing a group is like removing all the parameter definitions in the group.

In addition to adding one parameter at a time from a component, you can also add all the
parameters for a group within a component, or all the parameters in the component, by selecting
those items.

If you double-click (or push Create Override) the <Common> group or a parameter in the <Common>
group in a component, a special group is created in the Aggregate consisting of all of the groups in
that component, and the overriding parameter (or parameters) are added to that. This is done
because each component can have different groups belonging to the Common group notion; the
Common group for a component is just shorthand for all the groups in that component.

The Aggregate’s specification of the default group and search strategy override any specifications
contained in the components.

1.7. Parameter Settings Page

The Parameter Settings page is rather straightforward; it is where the user defines parameter
settings for their engines. An example of such a page is given below:

20

[PersonTtleAnnatatorsaml 07 _ B

k

~ Configuration Parameters = Values
This section list all configuration parameters, ether as plain Specify the value of the selected corfiguration
parameters, or as part of one or more groups. Select one to parameter.
show. or set the value in the right hand panel,
= <Mot in any group> Value
Muti Reg Sting Mame: CovilianTites i
: Vica Prasidant
Mt Ftaq_ String I'_éa'n!:?lutar'_-'l'.ﬂhs President
: 4 Vice Pres.
Single Opt Sting Name: Containing Annotation Typ Pres, IIIII
~ Govemor
Value list: Lt. Govemor
Gov,
i Cov []
Senator
(€] | (2] Sen.

M'WQEPW:?WEE@;EQTMWQWE Indexes | Resources |

:

Figure 14. Parameter settings page

For single valued attributes, the user simply types the default value into the Value box on the right
hand side. For multi-valued parameters the user should use the Add, Edit and Remove buttons to
manage the list of multiple parameter values.

Values within groups are shown with each group separately displayed, to allow configuring
different values for each group.

Values are checked for validity. For Boolean values in a list, use the words true or false.

If you specify a value in a single-valued parameter, and then delete all the
characters in the value, the CDE will treat this as if you wanted to not specify any
setting for this parameter. In order to specify a 0 length string setting for a String-

valued parameter, you will have to manually edit the XML using the “Source” tab.
NOTE
For array valued parameters, if you remove all of the entries for a particular array

parameter setting, the XML will reflect a 0-length array. To change this to an
unspecified parameter setting, you will have to manually edit the XML using the
“Source” tab.

1.8. Type System Page

This page declares the type system used by the annotator. For aggregates it is derived by merging
the type systems of all constituent AEs. The types used by the AE constitute the language in which
the inputs and outputs are described in the Capabilities page and also affect the choice of indexes
on the Indexes page. The Type System page looks like the following:

21

PersonTitleAnnotatorxml

Type System Definition

= Types (or Classes) - Imported Type Systems
The following types (classes) are defined in this analysis engine descriptor. The following type systems are
The grayed out iterns are imported or merged from other descriptors, and cannot be edited included as part of this cne.
here. dit th dit thei files).
ere. (To edit them, edit their source files) m T
Type Mame or Feature Mame SuperType or Range Element Type | 44 Type S
= example.PersenTitle uima.tcas.Annotation
Kind example.PersonTitleKind Kind Location/Mame
=] example.PersonTitleKind uirna.cas.5tring
Allowed Value: Civilian
Allowed Value: Military
Allowed Value: Government

JCasGen
mited

g

JCasGen only those types defined within this project

You can change the default in UIMA prefs or in the UIMA menu
T i

Before discussing this page in detail, it is important to note that there are 3 settings that affect the
operation of this page. These are accessed by selecting the UIMA - Settings (or by going to the
Eclipse Window - Preferences —UIMA Preferences) and checking or unchecking one of the
following: “Auto generate .java files when defining types”, “Generate JCasGen classes only for types
defined within the local project scope” and “Display fully qualified type names.”

When the Auto generate option is checked and the development language for the AE is Java, any
time a change is made to a type and the change is saved, the corresponding .java files are generated
using the JCasGen tool. The results are stored in the primary source directory defined for the
project. The primary source directory is that listed first when you right click on your project and
select Properties —Java Build Path, click on the Source tab and look in the list box under the text
that reads: Source folder on build path. If no source folders are defined, you will get a warning that
you have no source folders defined and JCasGen will not be run. When JCasGen is run, you can
monitor the progress of the generation by observing the status on the Eclipse status line (normally
at the bottom of the Eclipse window). JCasGen runs on the fully-merged type system, consisting of
the type specification plus any imported type system, plus (for aggregates) the merged type systems
of all the components in an aggregate.

If the components of the aggregate have different definitions for the same type
name, the CDE will show a warning. It is possible to continue past this
warning, in which case the CDE will produce the correct Java source files
representing the merged types (that is, the type definition that contains all of
the features defined on that type by all of your components). However, it is not
recommended to use this feature (of having different definitions for the same
type name) since it can make it difficult to combine/package your annotator
with others.

WARNING

In addition to running automatically, you can manually run JCasGen on the fully
NOTE merged type system by clicking the JCasGen button, or by selecting Run JCasGen
from the UIMA pulldown menu:

22

ref.pdf#ugr.ref.jcas.merging_types_from_other_specs

- TAE xml - Eclipse Platform
% BRun ulHA Window Help
. u RunJCasGen |0 |y, o .
Saﬂhgs b W ﬁmn g&ne.-rate JCAS source java files when changing types

Figure 15. Setting JCasGen options

When Generate JCasGen classes only for types defined within the local project scope is checked, then
JCasGen skips generating classes for types that are imported from sources outside this project. This
might be done, for instance, if you have an aggregate which is importing type systems from its
delegates, some of which are defined in other projects, and have JCasGen’d files already present in
those other projects.

The UIMA settings and preferences for controlling this are used to initialize a particular instance of
the editor, when it is started. Following that, you can override this setting, just for that editor, by
checking or unchecking the box shown on the type system page:

limited

Figure 16. Limit the scope of JCasGen

If this is checked, and one of the types that would be excluded has merged type
features, an error message is issued - because JCasGen will need to be run for the
combined (merged) type in order to get a class definition that will work for this
configuration (have access to all the features). If this happens, you have to run
without limiting JCasGen, and manually delete any duplicated/unwanted source
results.

NOTE

When Display fully qualified type names is left unchecked, the namespace of types is not displayed,
i.e. if a fully qualified type name is my.namespace.person, only the abbreviated type name person
will be displayed. In the Type page diagram shown above, Display fully qualified type names is in
fact unchecked.

To add, edit, or remove types the buttons on the top left section are used. When adding or editing
types, fully qualified type names should of course be used, regardless of whether the Display fully
qualified type names is unchecked. Removing or editing a type will have a cascading effect in that
the type removal/edit will effect inputs, outputs, indexes and type priorities in the natural way.

When a type is added, this dialog is shown:

23

=T Xada Type

Use this panel to spedfy a type.
Type names must be globally unique, unless you are intentionally redefining
another type.
Type Name Isume. typename. you.Choose
Supertype: | uima,tcas.Annotation Browse I
Description
oK Cancel

Figure 17. Adding a type

Type names should be specified using a namespace. The namespace is like a Java package name,
and serves to insure type names are unique. It also serves as the package name for the generated
JCas classes. The namespace name is the set of names up to the last period in the string.

The supertype must be picked from an existing type. The entry field for the supertype supports
Eclipse-style content assist. To use it, put the cursor in the supertype field, and type a letter or two
of the supertype name (lower case is fine), either starting with the name space, or just with the type
name (without the name space), and hold down the Control key and then press the spacebar. When
you do this, you can see a list of suitable matching types. You can then type more letters to narrow
down your choices, or pick the right entry with the mouse.

To see the available types and pick one, press the Browse button. This will show the available types,
and as you type letters for the type name (in lower case —capitalization is ignored), the available
types that match are narrowed. When you’ve typed enough to specify the type you want, press
Enter. Or you can use the list of matching type names and pick the one you want with the mouse.

Once you’ve added the type, you can add features to it by highlighting the type, and pressing the
Add button.

If the type being defined is a subtype of uima.cas.String, the Add button allows you to add allowed
values for the string, instead of adding features.

To edit a type or feature, you can double click the entry, or highlight the entry and press the Edit
button. To delete a type or feature, you highlight the entry to be deleted, and click the delete button
or push the delete key.

If the range of a feature is an array or one of the built-in list types, an additional specification
allows you to specify if multiple references to the object referenced by this feature are allowed. If
they are not allowed then the XMI serialization of instances of this type use a more efficient format.

24

If the range of a feature is an array of Feature Structures, then it is possible to specify an element
type for the array. This information is used in the XMI serialization and also by the JCas generation
routines to generate more efficient code.

!

Oy g x|

Use this panel to add or edit a feature
The feature name must be unigue within this type
Feature Name 1anavExamp4f:

Range Type: | uima.cas.FSArray Browse |
References: |Not Spedified - defaults to multiple references not allowed |+ |
Element Type: | example.PersonTitle Browse
Description:

OK Cancel

Figure 18. Specifying a Feature Structure

It is also possible to import type systems for inclusion in your descriptor. To do this, use the Type
Import panel’s Add... button. This allows you to import a type system descriptor.

When importing by name, the name is resolved using the class path for the Eclipse project
containing the descriptor file being edited, or by looking up this name in the UIMA DataPath. The
DataPath can be set by pushing the Set DataPath button. It will be remembered for this Eclipse
project, as a project Property, so you only have to set it once (per project). The value of the DataPath
setting is written just like a class path, and can include directories or JAR files, just as is true for
class paths.

The following dialog allows you to pick one or more files from the Eclipse workspace, or one file (at
a time) from the file system:

25

= Import File(s) Selection

IJse this panel to select a file in the Workspace

[=I- uimaj-examples H
.Classpath
project
bin
data |i
deploy
=) descriptors

MixedAggregate. xml
=) analysis_engine
GovernmentOffidalRecognizer_RegEx_TAE.xml
MNamesAndGovernmentOfficals_TAE. xml
MNamesAndPersonTitles_TAE. xml M

OR

[Brnwse the file system...

) Import by MName
() Import By Location

OK, Cancel

Figure 19. Picking files for importing

This is essentially the same dialog as was used to add component engines to an aggregate. To import
from a type system descriptor that is not part of your Eclipse workspace, click the Browse the file
system... button.

Imported types are validated, and if OK, they are added to the list in the Imported Type Systems
section of the Type System page. Any types they define are merged with the existing type system.

Imported types and features which are only defined in imports are shown in the Type System
section, but in a grayed-out font; these type cannot be edited here. To change them, open up the
imported type system descriptor, and change them there.

If you hover the mouse over an import specification, it will show more information about the
import. If you right-click, it will bring up a context menu that allows opening the imported file in
the Editor, if the imported file is part of the Eclipse workspace. Changes you make, however, won’t
be seen until you close and reopen the editor on the importing file.

It is not possible to define types for an aggregate analysis engine. In this case the type system is
computed from the component AEs. The Type System information is shown in a grayed-out font.

1.8.1. Exporting

In addition to importing type specifications, you can export as well. When you push the Export...
button, the editor will create a new importable XML descriptor for the types in this type system,
and change the existing descriptor to import that newly created one.

26

"~ Export an importable part &

Specify a base file name, and perhaps alter the path where it should be stored,
and press OK

Base file name (without path or following ", xmi":
i myTypes

Where the generated part descriptor file will be stored:
C:fEdipse fworkspace fexamples /descriptors fanalysis_engine fmyTypes. xmil

" Import by Name
{* Import By Location

The base file name you type is inserted into the path in the line below automatically. You can
change the path where the generated part descriptor is stored by overtyping the lower text box.
When you click OK, the new part descriptor will be generated, and the current descriptor will be
changed to import that part.

1.9. Capabilities Page

Capabilities come in sets. You can have multiple sets of capabilities; each one specifies languages
supported, plus inputs and outputs of the Analysis Engine. The idea behind having multiple sets is
the concept that different inputs can result in different outputs. Many Analysis Engines, though,
will probably define just one set of capabilities. A sample Capabilities page is given below:

27

H:'—" TileArnatator Egi l:lE
Person TitleAnnotator xml
Capabilities: Inputs and Outputs i (5

+ Component Capabilities
This section descnbes the languages handled, and the inputs needed and outputs provided in
terms of the Types and Featuras.

| Name | input | Output | Name Space | (7355 Copapaty Set |
— Set
=l Languages Add Language
Sofas - I Add Type |
= Type: P Titl Output example
pe K::“" 2 | Add Sofa
[Aoa/Edt Features)
[3
Remove

b Sofa Mappings (Only used in aggregate Descriptors)

Overview | Aggregate | Parameters | Parameter Settings | Type System | Capabilties | Indexes | *%;

When defining the capabilities of a primitive analysis engine, input and output types can be any
type defined in the type system. When defining the capabilities of an aggregate the inputs must be a
subset of the union of the inputs in the constituent analysis engines and the outputs must be a
subset of the union of the outputs of the constituent analysis engines.

To add a type, first select something in the set you wish to add the type to, and press Add Type. The
following dialog appears presenting the user with a list of types which are candidates for additional
inputs:

& Add Types to a Capability Set %]

Mark one or more types as Input and//or Output by clicking the mouse in the
comesponding input and/or output column, and press OK

Type Name |km|&tpd|TmNmmm|
iAnnotation uima tcas i
Document Annotation uimaicas

Person TitleKind example

Follow the instructions to mark the types as input and / or output (a type can be both). By default,
the <all features> flag is set to true. If you want to specify a subset of features of a type, read on.

When types have features, you can specify what features are input and / or output. A type doesn’t
have to be an output to have an output feature. For example, an Analysis Engine might be passed as
input a type Token, and it adds (outputs) a feature to the existing Token types. If no new Token

28

instances were created, it would not be an output Type, but it would have features which are
output.

To specify features as input and / or output (they can be both), select a type, and press Add. The
following dialog box appears:

-!Spﬁyfmirﬂlﬂfwmm ﬁ

Designate by mouse clicking one or more features in the Input and/or Output
column. to designate as Input and/or Output press "0OK"

‘<all features >
sofa

bezn

end

Kind Yes

OK Cancel

To mark a feature as being input and / or output, click the mouse in the input and / or output
column for the feature. If you select <all features>, it unmarks any individual feature you selected,
since <all features> subsumes all the features.

The Languages part of the capability is where you specify what languages are supported by the
Analysis Engine. Supported languages should be listed using either a two letter ISO-639 language
code, or an ISO-639 language code followed by a hyphen and then a two-letter ISO-3166 country
code. Add a language by selecting Languages and pressing the Add button. The dialog for adding
languages is given below.

'@ Add Language [}
Enter & two letter 1S0-635 language code, followed optionally by a twodetter
I1S0-3166 country code (BExamples: fr or fr-CA)

The Sofa part of the capability is optional; it allows defining Sofa names that this component uses,
and whether they are input (meaning they are created outside of this component, and passed into
it), or output (meaning that they are created by this component). Note that a Sofa can be either
input or output, but can’t be both.

To add a Sofa name (which is synonymous with the view name), press the Add Sofa button, and this
dialog appears:

29

|~ Add a Sofa =]
Use this panel to specify a Sofa Name.

Sofa names must be unique within a Capability Set, and are simple names without
name spaces (no dots in the name),

Type the name in the box below, and specify f & is an input Sofa
{created outside of this component), or an output Sofa (created by this
component).

Sofa Name }m MewSofaName

input /Output: ™ Input ¢ Output

OK Cancel

1.9.1. Sofa (and view) name mappings

Sofa names, once created, are used in Sofa Mappings. These are optional mappings, done in an
aggregate, that specify which Sofas are the same ones but with different names. The Sofa Mappings
section is minimized unless you are editing an Aggregate descriptor, and have one or more Sofa
names defined for the aggregate. In that case, the Sofa Mappings section will look like this:

30

+ Component Capabilities

This section descnbes the languages handled, and the inputs needed and outputs provided in
terms of the Types and Features.

= Languages Add Language
en
fr [AddTie |
=] Sofas
M‘.-'k‘il?'-l ?Ff'? Fot Add Sofa
Type: GovemmentOfficial Output example
Type: Name Output example Edt...
<] o (S|
~ Sofa Mappings
This section shows all defined Sofas for an Aggregate and their mappings to the component
Sofas.

Add Aggregate Sofa Names using the Capabilties section; Select an Aggregate Sofa Name
and Add/Edit mappings for that Sofa in this section.

= ArotherScfa

GovemmentOfficial Recognizer/so2 Edrt
= MylnputSofa
GovemmentOfficial Recognizer/sol
MNameRecognizer
Outputs

Overview | Aggregate | Parameters | Parameter Settings | Type System Capabilties Indexes | 5

Here the aggregate has defined two input Sofas, named “MylInputSofa”, and “AnotherSofa”. Any
named sofas in the aggregate’s capabilities will appear in the Sofa Mapping section, listed either
under Inputs or Outputs. Each name in the Mappings has 0 or more delegate (component) sofa
names mapped to it. A delegate may have multiple Sofas, as in this example, where the
GovernmentOfficialRecognizer delegate has Sofas named “so1” and “so2”.

Delegate components may be written as Single-View components. In this case, they have one
implicit, default Sofa (“_InitialvView”), and to map to it you use the form shown for the
“NameRecognizer”- you map to the delegate’s key name in the aggregate, without specifying a Sofa
name. You can also specify the sofa name explicitly, e.g., NameRecognizer/_InitialView.

To add a new mapping, select the Aggregate Sofa name you wish to add the mapping for, and press
the Add button. This brings up a window like this, showing all available delegates and their Sofas;
select one or more (use the normal multi-select methods) of these and press OK to add them.

31

.jmmudﬂ'ﬁﬂ&haiw:'&iah <)
Change the selection a5 needed to reflect bindings.

Select all the delegate sofas from the list below which should be associated with the aggregste sofa name “Mylnput Sofa”.
Hold down the Shift or Control keys to select muttiple tems.

iGovemmentOfficialRecognizer/sol |
GovemmentOfficial Recognizer/so2
Name Recognizer

OK Cancel

To edit an existing mapping, select the mapping and press Edit. This will show the existing mapping
with all mapped items “selected”, and other available items unselected. Change the items selected
to match what you want, deselecting some, and perhaps selecting others, and press OK.

1.10. Indexes Page

The Indexes page is where the user declares what indexes and type priority lists are used by the
analysis engine. Indexes are used to determine which Feature Structures of a particular type are
fetched, using an iterator in the UIMA API. An unpopulated Indexes page is displayed below:

32

= PersonTitleAnnotator_WithinNamesOnly.xml 5 | im
PersonTitieAnnotator_WithinNamesOnly, xml I

Indexes 6 =
= Indexes & Index Imports
The following indexes are defined on the type system for this The following index
engine. definitions are induded as
t of this one,
rame |Type [Knd | rggimdex] o
x L - §
= Annotation Index (Built-n) Annotation sorted I Add... I"'-‘H:-' g ‘
begin Standard Add Key
sy e —— | [DataPath
TYPE PRIORITY Standard Edi, =
] . '+ Type Priority
+ Priority Lists Imports
This section shows the defined Prioirity Lists The following type priority
imports are induded as part
Add Set of the type priorities:
Add I Wr-- I-:".'.il'l-i-.-' ‘
Set DataPath

Aggregate | Parameters Parameter Settings Type System | Capabiities Indexes Resources >

Both indexes and type priority lists can have imports. These imports work just like the type system
imports, described above. Both indexes and type priority lists can be exported to new component
descriptors, using the Export... button, just like the type system export operation described above.

The built-in Annotation Index is always present. It is based on the built-in type
uima.tcas.Annotation and has keys begin (Ascending), end (Descending) and TYPE_PRIORITY. There
are no built-in type priorities, so this last sort item does not play a role in the index unless type
priorities are specified.

Type priority may be combined with other keys. Type priorities are defined in the Priority Lists
section, using one or more priority list. A given priority list gives an ordering among a group of
types. Types that appear higher in the priority list are given higher priority, in other words, they
sort first when TYPE_PRIORITY is specified as the index key. Subtypes of these types are also
ordered in a consistent manner, unless overridden by another specific type priority specification.
To get the ordering used among all the types, all of the type priority lists are merged. This gives a
partial ordering among the types. Ties are resolved in an unspecified fashion. The Component

33

Descriptor Editor checks for incompatible orderings, and informs the user if they exist, so they can
be corrected.

To create a new index, use the Add Index button in the top left section. This brings up this dialog:

u Add an index ’ﬁ’
Add or Edit an index specification

The Index name must be globally unigue.

Index Name: Iexample.indax'l

Index Kind: Ifiﬁ'ftE'iI

CAS Type lr‘\iuima.t-:as.Fu'mu:ntatic:an

Feature Name i Sorting Direction

begin Standard
end Standard
Sort Keys:
| 5_] i | {_|

Each index needs a globally unique index name. Every index indexes one CAS type (including its
subtypes). If you’re using Eclipse 3.2 or later, the entry field for this has content assist (start typing
the type name and press Control —-Spacebar to get help, or press the Browse button to pick a type).

Indexes can be sorted, in which case you need to specify one or more keys to sort on. Sort keys are
selected from features whose range type is Integer, Float, or String. Some elements will be disabled
if they are not relevant. For instance, if the index kind is “bag”, you cannot provide sort keys. The
order of sort keys can be adjusted using the up and down buttons, if necessary.

There is usually no need to explicitly declare a Bag index in your descriptor. As of
UIMA v2.1, if you do not declare any index for a type (or any of its supertypes), a
Bag index will be automatically created. This index is accessed using the
getAllIndexedFS(::-) method defined on the index repository.

NOTE

A set index will contain no duplicates of the same type, where a duplicate is defined by the indexing
comparator. That is, if you commit two feature structures of the same type that are equal with
respect to the indexing comparator, only the first one will be entered into the index. Note that you
can still have duplicates with respect to the indexing order, if they are of a different type. A set
index is not guaranteed to be sorted. If no keys are specified for a set index, then all instances are
considered by default to be equal, so only the first instance (for a particular type or subtype of the
type being indexed) is indexed. On the other hand, “bag” indicates that all annotation instances are
indexed, including duplicates.

The Priority Lists section of the Indexes page is used to specify Priority Lists of types. Priority Lists
are unnamed ordered sets of type names. Add a new priority list by clicking the Add Set button. Add

34

a type to an existing priority list by first selecting the set, and then clicking Add. You can use the up
and down buttons to adjust the order as necessary; these buttons move the selected item up or
down.

Although it is possible to import self-contained index and type priority files, the creation of such
files is not yet supported by the Component Descriptor Editor. If you create these files using another
editor, they can be imported using the corresponding Import panels, shown on the right. Imports
are specified in the same manner as they are for Type System imports.

1.11. Resources Page

The resources page describes resource dependencies (for primitive Analysis Engines) and external
Resource specification and their bindings to the resource dependencies.

Only primitive Analysis Engines define resource dependencies. Primitive and Aggregate Analysis
Engines can define external resources and connect them (bind them) to resource dependencies.

When an Aggregate is providing an external resource to be bound to a dependency, the binding is
specified using a possibly multi-level path, starting at the Aggregate, and specify which component
(by its key name), and then if that component is, in turn, an Aggregate, which component (again by
its key name), and so on until you reach a primitive. The sequence of key names is made into the
binding specification by joining the parts with a “/” character. All of this is done for you by the
Component Descriptor Editor.

Any external resource provided by an Aggregate will override any binding provided by any lower
level component for the same resource dependency.

There are two views of the Resources page, depending on whether the Analysis Engine is an
Aggregate or Primitive. Here’s the view for a Primitive:

35

B personTitleAnnotator_WithinNamesOnly. xml 57 =
PersonTiteAnnotator_WithinMamesCnly, xml

Resources
+ Resources Needs, Definitions and + Resource Dependencies
Bindi
T Primitives declare what resources they need, A
Spedfy External Resources; Bind them to primitive can only bind to one external resource.,
dependencies on the right panel by selecting the =
corresponding dependency and dicking Bind. Bound I Optional? l L I Intert

Bindings

The following definitions are induded:
| Add... | | Rermve |

Set DataPath

Kind I Location/Mame I

£ s -

To declare a resource dependency, click the Add button in the right hand panel. This puts up the
dialog:

Add an Bdemal Resource Dependency

The only required field is the key name.,
which must be unigue within this primitive Analysis Engine descriptar.

Key [
Description:
Imterface I

[T Check this box if this resource is optional

[F Cancel

The Key must be unique within the descriptor declaring it. The Interface, if present, is the name of a
Java interface the Analysis Engine uses to access the resource.

Declare actual External resource on the left side of the page. Clicking Add brings up this dialog:

36

= Add an Exdemal Resource Definition &

Define and name an extemal resource

The first LUBL field is used to identify the extemal resource.

ff both LIRL fields are used, they form a name by concatenating the first with the
document language and then with the second {suffoc) URL.

The {optional) Implemertation specifies a Java class which implements the
interface used by the Analysis Engine to access the resource.

Mame: i|

Description:

URL: |

URL Suffic |

Implementation |

(1§ Cancel

Figure 20. Specifying an External Resource

The Name must be unique within this Analysis Engine. The URL identifies a file resource. If both
the URL and URL suffix are used, the file resource is formed by combining the first URL part with
the language-identifier, followed by the URL suffix; see Resource Manager Configuration. URLs may
be written as relative URLs; in this case they are resolved by looking them up relative to the
classpath and/or datapath. A relative URL has the path part starting without an intial “/”; for
example: file:my/directory/file. An absolute URL starts with file:/ or file:/// or
file://some.network.address/. For more information about URLs, please read the javaDoc
information for the Java class URL.

The Implementation is optional, and if given, must be a Java class that implements the interface
specified in any Resource Dependencies this resource is bound to.

1.11.1. Binding

Once you have an external resource definition, and a Resource Dependency, you can bind them
together. To do this, you select the two things (an external resource definition, and a Resource
Dependency) that you want to bind together, and click Bind.

1.11.2. Resources with Aggregates

When editing an Aggregate Descriptor, the Resource definitions panel will show all the resources at
the primitive level, with paths down through the components (multiple levels, if needed) to get to
the primitives. The Aggregate can define external resources, and bind them to one or more uses by
the primitives.

37

ref.pdf#ugr.ref.xml.component_descriptor.aes.primitive.resource_manager_configuration

1.11.3. Imports and Exports

Resource definitions and their bindings can be imported, just like other imports. Existing Resource
definitions and their bindings can be exported to a new importable part, and replaced with an
import for that importable part, using the “Export...” button, just like the similar function on the
Type System page.

1.12. Source Page

The Source page is a text view of the xml content of the Analysis Engine or Type System being
configured. An example of this page is displayed below:

E?HunskﬂﬁmmmmuﬁﬂhdhjﬁEnﬂ A =

MNamesAndGovemmentOfficials_ TAE soml S
l‘xhl version="1.0" epocding="UIF-E"7 ~
<taerbescription xmlns="http://uima.watson.ibm,com/rescurceSpecifier™>

<frameworkInplementation>com. ibm.uims . java</frameworkImplemencacions
<primitive>falsac/primitive>
<delegaceAnalysisEngineSpacifieras
cdelagaceinalysisEngine keye"GovernmentOfficialRecognizer™»
<import location="GovernmentOfficialRecognizer g T
</delegaceAnalysisEngine>
<delegateinalysisEngine key="MamaRecognizer™>»
<import location="SimplelameRecog RL;%:‘_RQ*‘J’EM_T
</delegatefinal ysisEngine>
<fdelegacefinalysisEnginesSpecifiers>
<analysisEngineMecaDacad>
<name>pggregate TAE - Name Recognizer and Govermnment Official Recognizer«</
<descripticon>Decects Names and Government Officisla</descriptions [|
A >

AE . xml™ />

‘Overview Aggregate Parameters Paramater Settings | Typa System Capabilties | indexes | Resounces Source |

Changes made in the GUI are immediately reflected in the xml source, and changes made in the xml
source are immediately reflected back in the GUI The thought here is that the GUI view and the
Source view are just two ways of looking at the same data. When the data is in an unsaved state the
file name is prefaced with an asterisk in the currently selected file tab in the editor pane inside
Eclipse (as in the example above).

You may accidentally create invalid descriptors or XML by editing directly in the Source view. If you
do this, when you try and save or when you switch to a different view, the error will be detected
and reported. In the case of saving, the file will be saved, even if it is in an error state.

1.12.1. Source formatting — indentation

The XML is indented using an indentation amount saved as a global UIMA preference. To change
this preference, use the Eclipse menu item: Windows - Preferences — UIMA Preferences.

1.13. Creating a Self-Contained Type System

It is also possible to use the Component Descriptor Editor to create or edit self-contained type
systems. To create a self-contained type system, select the menu item File ~ New — Other and then
select Type System Descriptor File. From the next page of the selection wizard specify a Parent
Folder and File name and click Finish.

38

o

Select a wizard

Wizards:

#-[= Eclipse Modeling Framewark

[+ Example EMF Model Creation Wizards
= Java

- Java Emitter Templates

[+ Plugin Development

- Simple

== UIMA

- B Analysis Engine Descriptor File
P % Type System Descriptor File
#-[= Examples

2 Back Next > Frich | Cancel |

& New Type System Descriptor File (%]
Type System Descriptor File
Create a new Type System Descriptor file

Parent Folder: I!-‘iestfdescﬁpturs;’anahrsis_engine Browse .. |

File name: It'_.'pe SystemDescriptor xml

«Back e s || Eiish Cancdl

This will take you to a version of the Component Descriptor Editor for editing a type system file
which contains just three pages: an overview page, a type system page, and a source page. The
overview page is a bit more spartan than in the case of an AE. It looks like the following:

39

Ef typesystemxml 57 Tm
typesystem xml

Overview

+ Owerall Identification Information
This section specifies the basic identification information for this

descriptor

MName typesystem
Version 10
Wendor

Description: A sample description would go here |

i Ovewiew_ﬁwe System i_Suurce [

Just like an AE has an associated name, version, vendor and description, the same is true of a self-
contained type system. The Type System page is identical to that in an AE descriptor file, as is the
Source page. Note that a self-contained type system can import type systems just like the type
system associated with an AE.

A type system component can also be created from an existing descriptor which contains a type
system definition section, by clicking on the Export... button on the Type System page.

1.14. Creating Other Descriptor Components

The new wizard can create several other kinds of components: Collection Processing Management
(CPM) components, flow controllers, and importable parts (besides Type Systems, described above,
Indexes, Type Priorities, and Resource Manager Configuration imports).

The CPM components supported by this editor include the Collection Reader, CAS Initializer, and
CAS Consumer descriptors. Each of these is basically treated just like a primitive AE descriptor, with
small changes to accommodate the different semantics. For instance, a CAS Consumer can’t declare
in its capabilities section that it outputs types or features.

Flow controllers are components that control the flow of CASes within an aggregate, an are edited
in a similar fashion as a primitive Analysis Engine.

The importable part support requires context information to enable the editor to work, because
much of the power of this editor comes from extensive checking that requires additional
information, other than what is available in just the importable part. For instance, when you create
or edit an Indexes import, the facility for adding new indexes needs the type information, which is
not present in this part when it is edited alone.

To overcome this, when you edit these descriptors, you will be asked to specify a context descriptor,
usually a descriptor which would import the part being edited, which would have the additional
information needed.

Various methods are used to guess what the context descriptor should be - and if the guess is

40

correct, you can just press the Enter key to confirm. The last successful context file is remembered
and will be suggested as the context file to use at the next edit session

41

Chapter 2. Collection Processing Engine
Configurator User’s Guide

A Collection Processing Engine (CPE) processes collections of artifacts (documents) through the
combination of the following components: a Collection Reader, Analysis Engines, and CAS
Consumers. "

The Collection Processing Engine Configurator(CPE Configurator) is a graphical tool that allows you
to assemble and run CPEs.

For an introduction to Collection Processing Engine concepts, including developing the components
that make up a CPE, read Collection Processing Engine Developer’s Guide. This chapter is a user’s
guide for using the CPE Configurator tool, and does not describe UIMA’s Collection Processing
Architecture itself.

2.1. Limitations of the CPE Configurator

The CPE Configurator only supports basic CPE configurations.

It only supports “Integrated” deployments (although it will connect to remotes if particular CAS
Processors are specified with remote service descriptors). It doesn’t support configuration of the
error handling. It doesn’t support Sofa Mappings; it assumes all Single-View components are
operating with the _InitialView Sofa. Multi-View components will not have their names mapped. It
sets up a fixed-sized CAS Pool.

To set these additional options, you must edit the CPE Descriptor XML file directly. You may then
open the CPE Descriptor in the CPE Configurator and run it. The changes you applied to the CPE
Descriptor will be respected, although you will not be able to see them or edit them from the GUIL

2.2. Starting the CPE Configurator

The CPE Configurator tool can be run using the cpeGui shell script, which is located in the bin
directory of the UIMA SDK. If you’ve installed the example Eclipse project, you can also run it using
the UIMA CPE GUI run configuration provided in that project.

If you are planning to build a CPE using components other than the examples
NOTE included in the UIMA SDK, you will first need to update your CLASSPATH

environment variable to include the classes needed by these components.

When you first start the CPE Configurator, you will see the main window shown here:

42

tug.pdf#ugr.tools.cpe
ref.pdf#ugr.ref.xml.cpe_descriptor
oas.pdf#ugr.ovv.eclipse_setup.example_code

T Collection Processing Engine Conflgurator” = <)

File Wiew Help

Descrptors | | (oromse..

Unstructured Information Management Architecture

A Apache fcubator Praject.

Calection Reader

fnahysis Engines

() =)

CAS Consumers

ol =
) B v =]
alzed

2.3. Selecting Component Descriptors

The CPE Configurator’s main window is divided into three sections, one each for the Collection
Reader, Analysis Engines, and CAS Consumers.”

In each section of the CPE Configurator, you can select the component(s) you want to use by
browsing to (or typing the location of) their XML descriptors. You must select a Collection Reader,
and at least one Analysis Engine or CAS Consumer.

When you select a descriptor, the configuration parameters that are defined in that descriptor will
then be displayed in the GUI; these can be modified to override the values present in the descriptor.

For example, the screen shot below shows the CPE Configurator after the following components
have been chosen:

examples/descriptors/collectionReader/FileSystemCollectionReader.xml
examples/descriptors/analysis_engine/NamesAndPersonTitles_TAE.xml
examples/descriptors/cas_consumer/XmiWriterCasConsumer.xml

43

& Collection Processing Engine Configurator M=%

Fie Wiew Help
Hﬂ
Al

Unstructured Information Management Architecture

A Avmehe menhator Projeet

Colection Readar

Bescrptor: | \FilesysterCalectionReadsr = |

Inpist DAreckrys | Ol apache-uimal ex amplesidata

Encading: .]

Language: |
Anzlysis Engines
[Add...][£ ” 23 |

[3] Agoragate TAE - Mame Recaonzer and Persan Title Annatakor !

CAS Cansumers

lopddes) Loss J[oe]

El dmi Whiter CAS Corsumer i
Ouput Dibectory: | Citemplumalami_oupe |

— @III‘

ritiakzed

2.4. Running a Collection Processing Engine

After selecting each of the components and providing configuration settings, click the play (forward
arrow) button at the bottom of the screen to begin processing. A progress bar should be displayed
in the lower left corner. (Note that the progress bar will not begin to move until all components
have completed their initialization, which may take several seconds.) Once processing has begun,
the pause and stop buttons become enabled.

If an error occurs, you will be informed by an error dialog. If processing completes successfully, you
will be presented with a performance report.

2.5. The File Menu

The CPE Configurator’s File Menu has the following options:

Open CPE Descriptor

» Save CPE Descriptor

» Save Options (submenu)

» Refresh Descriptors from File System

e Clear All

44

o Exit

Open CPE Descriptor will allow you to select a CPE Descriptor file from disk, and will read in that
CPE Descriptor and configure the GUI appropriately.

Save CPE Descriptor will create a CPE Descriptor file that defines the CPE you have constructed.
This CPE Descriptor will identify the components that constitute the CPE, as well as the
configuration settings you have specified for each of these components. Later, you can use “Open
CPE Descriptor” to restore the CPE Configurator to the state. Also, CPE Descriptors can be used to
easily run a CPE from a Java program.

CPE Descriptors also allow specifying operational parameters, such as error handling options that
are not currently available for configuration through the CPE Configurator. For more information
on manually creating a CPE Descriptor, see Collection Processing Engine Descriptor Reference.

The Save Options submenu has one item, Use <import>". If this item is checked (the default), saved
CPE descriptors will use the “<import> syntax to refer to their component descriptors. If unchecked,
the older <include> syntax will be used for new components that you add to your CPE using the GUI
(However, if you open a CPE descriptor that used <import>, these imports will not be replaced.)

Refresh Descriptors from File System will reload all descriptors from disk. This is useful if you
have made a change to the descriptor outside of the CPE Configurator, and want to refresh the
display.

Clear All will reset the CPE Configurator to its initial state, with no components selected.

Exit will close the CPE Configurator. If you have unsaved changes, you will be prompted as to
whether you would like to save them to a CPE Descriptor file. If you do not save them, they will be
lost.

When you restart the CPE Configurator, it will automatically reload the last CPE descriptor file that
you were working with.

2.6. The Help Menu

The CPE Configurator’s Help menu provides About information and some very simple instructions
on how to use the tool.

[1] Earlier versions of UIMA supported another component, the CAS Initializer, but this component is now deprecated in UIMA
Version 2.

[2] There is also a fourth pane, for the CAS Initializer, but it is hidden by default. To enable it click the View CAS Initializer Panel
menu item.

45

tug.pdf#ugr.tug.application.running_a_cpe_from_a_descriptor
ref.pdf#ugr.ref.xml.cpe_descriptor

Chapter 3. Document Analyzer User’s Guide

The Document Analyzer is a tool provided by the UIMA SDK for testing annotators and AEs. It reads
text files from your disk, processes them using an AE, and allows you to view the results. The
Document Analyzer is designed to work with text files and cannot be used with Analysis Engines
that process other types of data.

For an introduction to developing annotators and Analysis Engines, read xref:tug.adoc#ugr.tug.aae.
This chapter is a user’s guide for using the Document Analyzer tool, and does not describe the
process of developing annotators and Analysis Engines.

3.1. Starting the Document Analyzer

To run the Document Analyzer, execute the documentAnalyzer script that is in the bin directory of
your UIMA SDK installation, or, if you are using the example Eclipse project, execute the “UIMA
Document Analyzer” run configuration supplied with that project.

Note that if you’re planning to run an Analysis Engine other than one of the examples included in
the UIMA SDK, you’ll first need to update your CLASSPATH environment variable to include the
classes needed by that Analysis Engine.

When you first run the Document Analyzer, you should see a screen that looks like this:

_loix

File Help
Unstructured
. &= Information Management

R WRIRRN | Argnitostare

Input Directory: Iu::'l,apau:he-uima'l,examples'l,data Browse, .

Input File Forrmat: Ixmi vI [Lenient deserialization Character Encoding: ILITF-B

Qukput Directory: Iu::'l,apache-uima'l,examples'l,data'l,pru:ucessed Browse, ,

Location of Analysis Engineg %ML Descriptor: Iu::'l,apau:he-uima'l,examples'l,|:|escriptu:urs'l,anaIysis_engine'l,Persu:unTitIe.ﬁ.nnDtatDr.xml Browse, ,

il

#ML Tag containing Text (optional): I
Language: Fn hd I

Run | Intetactive | View |

3.2. Running an AE
To run a AE, you must first configure the six fields on the main screen of the Document Analyzer.

Input Directory: Browse to or type the path of a directory containing text files that you want to
analyze. Some sample documents are provided in the UIMA SDK under the examples/data directory.

Input File Format: Set this to "text". It can, alternatively, be set to one of the two serialized forms
for CASes, if you have previously generated and saved these. For the CAS formats only, you can also

46

specify "Lenient deserialization"”; if checked, then extra types and features in the CAS being
deserialized and loaded (that are not defined by the Annotator-to-be-run’s type system) will not
cause a deserialization error, but will instead be ignored.

Character Encoding: The character encoding of the input files. The default, UTF-8, also works fine
for ASCII text files. If you have a different encoding, select it here. For more information on
character sets and their names, see the Javadocs for java.nio.charset.Charset.

Output Directory: Browse to or type the path of a directory where you want output to be written.
(As we’ll see later, you won’t normally need to look directly at these files, but the Document
Analyzer needs to know where to write them.) The files written to this directory will be an XML
representation of the analyzed documents. If this directory doesn’t exist, it will be created. If the
directory exists, any files in it will be deleted (but the tool will ask you to confirm this before doing
s0). If you leave this field blank, your AE will be run but no output will be generated.

Location of AE XML Descriptor: Browse to or type the path of the descriptor for the AE that you
want to run. There are some example descriptors provided in the UIMA SDK under the
examples/descriptors/analysis_engine and examples/descriptors/tutorial directories.

XML Tag containing Text: This is an optional feature. If you enter a value here, it specifies the
name of an XML tag, expected to be found within the input documents, that contains the text to be
analyzed. For example, the value TEXT would cause the AE to only analyze the portion of the
document enclosed within <TEXT>...</TEXT> tags. Also, any XML tags occuring within that text will
be removed prior to analysis.

Language: Specify the language in which the documents are written. Some Analysis Engines, but
not all, require that this be set correctly in order to do their analysis. You can select a value from
the drop-down list or type your own. The value entered here must be an ISO language identifier,
the list of which can be found here: http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt.

Once you’ve filled in the appropriate values, press the “Run” button.

If an error occurs, a dialog will appear with the error message. (A stack trace will also be printed to
the console, which may help you if the error was generated by your own annotator code.)
Otherwise, an “Analysis Results” window will appear.

3.3. Viewing the Analysis Results

After a successful analysis, the “Analysis Results” window will appear.

47

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

ﬁ Analysis Results

These are the Analyzed Documerts.

[#] IEM_LiteSciences it

Mewe |EM_Fellowes txt
SeminarChallengezinspeechRecoghition txt
TrainablelinformationExtractionSystems txd
UIMASummer=chool 2003 Lt
LiIMA,_Seminars tx
WatzonConferenceRooms txd

Resutts Display Format. (5 Java Viewer () Jv user colors (OJHTML () XML

[Edit Style Map H Performance Stats H Close]

The “Results Display Format” options at the bottom of this window show the different ways you can
view your analysis — the Java Viewer, Java Viewer (JV) with User Colors, HTML, and XML. The

default, Java Viewer, is recommended.

Once you have selected your desired Results Display Format, you can double-click on one of the
files in the list to view the analysis done on that file.

For the Java viewer, two different view modes are supported, each represented by one of two radio
buttons titled "Annnotations”, and "Features":

In the "Annotations" view, each annotation which is declared to be an output of the pipeline (in the
top most Annotator Descriptor) is given a checkbox and a color, in the bottom panel. You can
control which annotations are shown by using the checkboxes in the bottom panel, the Select All
button, or the Deselet All button. The results display looks like this (for the AE descriptor
examples/descriptors/tutorial/ex4/MeetingDetector TAE.xml):

48

i ™
ﬁ Annotation Results for UIMASummerSchool2003.tatxmi in Chautuima)-2.7.M\apache-uima-bintexamples\data\processed g

(Click In Text to See Annotation Detail
|| | # Annotations

»

UIMA Summer Schoal

August 26, 2003 %

UIMA 101 - The Mew UIMA Introduction
(Hands-on Tutorial)

9:00AM-5:00PM in HAW GM-K35

m

August 28, 2003
FROST Tutarial -
9:00AM-5:00PM in HAW GM-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
(Hands-on Tutorial)
9:00AM-5:00PM in HAW 15-F53

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH"

3:00PM-4:30PM in HAW GN-+K35

UIMA Summer School Tutorial and Presentation Details
UIMA 101: The new UIMA tuterial

Tuesday August 26 9:00AM - 4:30PM in GN-K35 -
Annotation Types |
DateAnnot || DocumentAnnota. .. Meeting RoomMumber TimeAnnot |
[
Mode: @) & () Features

[Select all H Deselect Al ” Hide Unselected l

You can click the mouse on one of the highlighted annotations to see a list of all its features in the
frame on the right.

In the "Features" view, you can specify a combination of a single type, a single feature of that type,
and some feature values for that feature. The annotations whose feature values match will be
highlighted. Step by step, you first select a specific type of annotations by using a radio button in the
first tab of the legend.

49

i ™
ﬁ Annotation Results for UIMASummerSchool2003.tatxmi in Chautuima)-2.7.M\apache-uima-bintexamples\data\processed g

(Click In Text to See Annotation Detail
|| | # Annotations

»

UIMA Summer Schoal

August 26, 2003

UIMA 101 - The New UIMA Introduction
(Hands-on Tutorial)

9:00AM-5:00PM in HAW GM-K35

m

August 28, 2003
FROST Tutarial —
9:00AM-5:00PM in HAW GM-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
(Hands-on Tutorial)
9:00AM-5:00PM in HAW 15-F53

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH"

3:00PM-4:30PM in HAW GN-K35

UIMA Summer School Tutorial and Presentation Details
UIMA 101: The new UIMA tuterial
Tuesday August 26 9:00AM - 4:30PM in GN-K35 -

Annotation Types | Features | Feature Values

(7) DocumentAnnota... () Meeting [RoomNumber () TimeAnnot
|
Mode: (7) Annotations (@) Features
[Select all] [Deselect Al l l Hide Unselected l
L A

Selecting this automatically transitions to the second tab, where you then select a specific feature of
the annotation type.

i ™
ﬁ Annotation Results for UIMASummerSchool2003.tatxmi in Chautuima)-2.7.M\apache-uima-bintexamples\data\processed g

(Click In Text to See Annotation Detail
|| | # Annotations

»

UIMA Summer Schoal

August 26, 2003

UIMA 101 - The New UIMA Introduction
(Hands-on Tutorial)

9:00AM-5:00PM in HAW GM-K35

m

August 28, 2003
FROST Tutarial —
9:00AM-5:00PM in HAW GM-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
(Hands-on Tutorial)
9:00AM-5:00PM in HA S-F53

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH"

3:00PM-4:30PM in HAW GN-K35

UIMA Summer School Tutorial and Presentation Details
UIMA 101: The new UIMA tuterial
Tuesday August 26 9:00AM - 4:30PM in GN-K35 -

Annotation Types | Features | Feature Values

{ (") end (@) shortDateString
|
Mode: (7) Annotations (@) Features
[Select all] [Deselect Al l l Hide Unselected l
L A

Selecting this again automatically transitions you to the thrid tab, where you select some specific
feature values in the third tab of the legend.

50

i ™
ﬁ Annotation Results for UIMASummerSchool2003.tatxmi in Chautuima)-2.7.M\apache-uima-bintexamples\data\processed g

UIMA Summer Schoal » | Click In Text to See Annotation Detall
|| | # Annotations

August 26, 2003

UIMA 101 - The New UIMA Introduction
(Hands-on Tutorial)

9:00AM-5:00PM in HAW GM-K35

m

August 28, 2003
FROST Tutarial
9:00AM-5:00PM in HAW GM-K35

September 15, 2003

UIMA 201: UIMA Advanced Topics
(Hands-on Tutorial)
9:00AM-5:00PM in HAW 15-F53

September 17, 2003

The UIMA System Integration Test and Hardening Service
The "SITH"

3:00PM-4:30PM in HAW GN-K35

UIMA Summer School Tutorial and Presentation Details
UIMA 101: The new UIMA tuterial
Tuesday August 26 9:00AM - 4:30PM in GN-K35 -

| Annotation Types I Feathes| Feature Values |
8/26/03 JEIE [C]9/1s/03 [Cs/17/03 |

Mode: (7) Annotations (@) Features

[Select all H Deselect Al ” Hide Unselected l

In each of the above two view modes, you can click the mouse on one of the highlighted
annotations to see a list of all its features in the frame on the right.

If you are viewing a CAS that contains multiple subjects of analysis, then a selector will appear at
the bottom right of the Annotation Viewer window. This will allow you to choose the Sofa that you
wish to view. Note that only text Sofas containing a non-null document are available for viewing.

3.4. Configuring the Annotation Viewer

The “JV User Colors” and the HTML viewer allow you to specify exactly which colors are used to
display each of your annotation types. For the Java Viewer, you can also specify which types should
be initially selected, and you can hide types entirely.

To configure the viewer, click the “Edit Style Map” button on the “Analysis Results” dialog. You
should see a dialog that looks like this:

e

[eomin | (o] » 2 s =

Comibm Jma ecamples SokeniTer Sentence | Annotation Label Arcotalion Type / Fesbure
tom bm Lime sxamples Sokerizer Token Carderen wten o Lima s xamplics BokeriTer Sarbers

e comim,

| Zove || Corcei || Fosm |

31

To change the color assigned to a type, simply click on the colored cell in the “Background” column
for the type you wish to edit. This will display a dialog that allows you to choose the color. For the
HTML viewer only, you can also change the foreground color.

If you would like the type to be initially checked (selected) in the legend when the viewer is first
launched, check the box in the “Checked” column. If you would like the type to never be shown in
the viewer, click the box in the “Hidden” column. These settings only affect the Java Viewer, not the
HTML view.

When you are done editing, click the “Save” button. This will save your choices to a file in the same
directory as your AE descriptor. From now on, when you view analysis results produced by this AE
using the “JV User Colors” or “HTML” options, the viewer will be configured as you have specified.

3.5. Interactive Mode

Interactive Mode allows you to analyze text that you type or cut-and-paste into the tool, rather than
requiring that the documents be stored as files.

In the main Document Analyzer window, you can invoke Interactive Mode by clicking the
“Interactive” button instead of the “Run” button. This will display a dialog that looks like this:

ﬁ Annotation Input .

Type or cut-and-paste in your text to be annotated. Then click on &Analyze.

The guick browen fox jumps over the lazy dog

Results Display Formst. 80 Java WViewer | JWusercolors 0 HTML (0 XML

[Analyze][CI-_:use]

You can type or cut-and-paste your text into this window, then choose your Results Display Format
and click the “Analyze” button. Your AE will be run on the text that you supplied and the results
will be displayed as usual.

3.6. View Mode

If you have previously run a AE and saved its analysis results, you can use the Document Analyzer’s
View mode to view those results, without re-running your analysis. To do this, on the main
Document Analyzer window simply select the location of your analyzed documents in the “Output

32

Directory” dialog and click the “View” button. You can then view your analysis results as described
in Section Section 3.3.

33

Chapter 4. Annotation Viewer

The Annotation Viewer is a tool for viewing analysis results that have been saved to your disk as
external XML representations of the CAS. These are saved in a particular format called XMI. In the
UIMA SDK, XML versions of CASes can be generated by:

* Running the Document Analyzer, which saves an XML representations of the CAS to the
specified output directory.

* Running a Collection Processing Engine that includes the XMI Writer CAS Consumer
(examples/descriptors/cas_consumer/XmiWriterCasConsumer.xml).

» Explicitly creating XML representations of the CAS from your own application using the
org.apache.uima.cas.impl.XMISerializer class. The best way to learn how to do this is to look at
the example code for the XMI Writer CAS Consumer, located in
examples/src/org/apache/uima/examples/xmi/XmillriterCasConsumer.java. ™

NOTE The Annotation Viewer only shows CAS views where the Sofa data type is a String.
You can run the Annotation Viewer by executing the annotationViewer shell script located in the bin

directory of the UIMA SDK or the "UIMA Annotation Viewer" Eclipse run configuration in the uimaj-
examples project. This will open the following window:

=

(# Annotation Viewer mE X

File Help

.@ Unstructured Information Management Architecture

E. An Apache menbator Project.
Input Directary: | C:lapache-uimalexamplesidataiprocessed

Typeaystem or AE Descriptar File: | Z:apache-uimalexamplesidescriptorshanalysis_enging\Perst | | Browse,,

Figure 21. Screenshot of the Annotation Viewer

Select an input directory (which must contain XMI files), and the descriptor for the AE that
produced the Analysis (which is needed to get the type system for the analysis). Then press the
“View” button.

This will bring up a dialog where you can select a viewing format and double-click on a document
to view it.

[1] An older form of a different XML format for the CAS is also provided mainly for backwards compatibility. This form is called
XCAS, and you can see examples of its use in examples/src/org/apache/uima/examples/cpe/XCasWriterCasConsumer.java.

54

Chapter 5. CAS Visual Debugger

5.1. Introduction

The CAS Visual Debugger is a tool to run text analysis engines in UIMA and view the results. The
tool is implemented as a stand-alone GUI tool using Java’s Swing library.

This is a developer’s tool. It is intended to support you in writing text analysis annotators for UIMA
(Unstructured Information Management Architecture). As a development tool, the emphasis is not
so much on pretty pictures, but rather on navigability. It is intended to show you all the information
you need, and show it to you quickly (at least on a fast machine ;-).

The main purpose of this application is to let you browse all the data that was created when you
ran an analysis engine over some text. The display mimics the access methods you have in the CAS
API in terms of indexes, types, feature structures and feature values.

As in the CAS, there is special support for annotations. Clicking on an annotation will select the
corresponding text, and conversely, you can display all annotations that cover a given position in
the text. This will be explained in more detail in the section on the main display area.

As usual, the graphics in this manual are for illustrative purposes and may not look 100% like the
actual version of CVD you are running. This depends on your operating system, your version of
Java, and a variety of other factors.

5.1.1. Running CVD

You will usually want to start CVD from the command line, or from Eclipse. To start CVD from the
command line, you minimally need the uima-core and uima-tools jars. Below is a sample command
line for sh and its offspring.

java -cp ${UIMA_HOME}/1ib/uima-core.jar:${UIMA_HOME}/1ib/uima-tools.jar
org.apache.uima.tools.cvd.CVD

However, there is no need to type this. The ${UIMA_HOME}/bin directory contains a cvd.sh and cvd.bat
file for Unix/Linux/MacOS and Windows, respectively.

In Eclipse, you have a ready to use launch configuration available when you have installed the
UIMA sample project). Below is a screenshot of the the Eclipse Run dialog with the CVD run
configuration selected.

55

oas.pdf#ugr.ovv.eclipse_setup.example_code

e

Create, manage, and run configurations
Run a Java application @
& [—+l
= tnow
CEX B3 Mame: | IUIMA CAS Visual Debugger |
type filter text -
| KG Main . (<= Arguments | =i IRE | {!’q} Classpath | L',y Source | Py N
: '.' Edipse Application Project:
. 'i% Equinox O5Gi Framework
Java Applet | uimaj-examples | [Browse...]
= Java Application
CVD Main dass:
i _UIMA EERHIR RIS . |Drg.apache.uima.b:nls.annnt_view.Gladis | [Search...]
UIMA CPE GUI [1Indude libraries when searching for a main dass
LIMA Document Analyzer [indude inherited mains when searching for a main dass
. UIMA JCasGen Ve
UIMA JCasGen Merge
UIMA PEAR Installer

Figure 22. Eclipse run dialog with CVD selected

5.1.2. Command line parameters

You can provide some command line parameters to influence the startup behavior of CVD. For
example, if you want to run a certain analysis engine on a certain text over and over again (for
debugging, say), you can make CVD load the annotator and text at startup and execute the
annotator. Here’s a list of the supported command line options.

Table 1. Command line options

Option Description

-text <textFile> Loads the text file <textFile>

-desc <descriptorFile> Loads the descriptor <descriptorFile>

-exec Runs the pre-loaded annotator; only allowed in

conjunction with -desc
-datapath <datapath> Sets the data path to <datapath>

-ini <iniFile> Makes CVD use alternative ini file <textFile>
(default is ~/annotViewer.pref)

-lookandfeel <lnfClass> Uses alternative look-and-feel <1nfClass>

5.2. Error Handling

On encountering an error, CVD will pop up an error dialog with a short, usually incomprehensible
message. Often, the error message will claim that there is more information available in the log file,
and sometimes, this is actually true; so do go and check the log. You can view the log file by
selecting the appropriate item in the "Tools" menu.

36

[=1

Exception

® org.apache.uima.analysis_engine.AnalysisEngineProcessException
More detailed information is in the log file.

OK

5.3. Preferences File

The program will attempt to read on startup and save on exit a file called annotViewer.pref in your
home directory. This file contains information about choices you made while running the program:
directories (such as where your data files are) and window sizes. These settings will be used the
next time you use the program. There is no user control over this process, but the file format is
reasonably transparent, in case you feel like changing it. Note, however, that the file will be
overwritten every time you exit the program.

If you use CVD for several projects, it may be convenient to use a different ini files for each project.
You can specify the ini file CVD should use with the

-ini <iniFile>
parameter on the command line.

5.4. The Menus

We give a brief description of the various menus. All menu items come with mnemonics (e.g., Alt-F
X will exit the program). In addition, some menu items have their own keyboard accelerators that
you can use anywhere in the program. For example, Ctrl-S will save the text you’ve been editing.

5.4.1. The File Menu

The File menu lets you load, create and save text, load and save color settings, and import and
export the XCAS format. Here’s a screenshot.

57

CAS Visual Debugger (CVD)
File| Edit Run Tools Help

Mew Text... Ctrl-N

Open Text File Ctrl-0
Save Text File Ctrl-5
Save Text As...

Code Page [

Recently used ... b

Load Color Settings
Save Color Settings

Read Type System File
Write Type System File

Read XMl CAS File
Write XMI CAS File

Read XCAS File
Write XCAS File

Exit

Below is a list of the menu items, together with an explanation.

New Text...

Clears the text area. Text you type is written to an anonymous buffer. You can use "Save Text As..."
to save the text you typed to a file. Note: whenever you modify the text, be it through typing,
loading a file or using the "New Text..." menu item, previous analysis results will be lost. Since the
previous analysis is specific to the text, modifying the text invalidates the analysis.

Open Text File

Loads a new text file into the viewer. The next time you run an analysis engine, it will run the text
you loaded last. Depending on the annotator you’re using, the program may run slow with very
large text files, so you may want to experiment.

Save Text File

Saves the currently open text file. If no file is currently loaded (either because you haven’t loaded a
file, or you’ve used the "New Text..." menu item), this menu item is disabled (and Ctrl-S will do
nothing).

Save Text As...

Save the text to a file of your choosing. This can be an existing file, which is then overwritten, or it
can be a new file that you’re creating.

Change Code Page

Allows you to change the code page that is used to load and save text files. If you’re sure the text
you’re loading is in ASCII or one of the 8-bit extensions such as ISO-8859-1 (ISO Latin1), there is
probably nothing you need to do. Just load the text and look at the display. If you see no funny
characters or square boxes, chances are your selected code page is compatible with your text file.
Note that the code page setting is also in effect when you save files. You can observe the effects with

38

a hex editor or by just looking at the file size. For example, if you save the default text This is where
the text goes. to a file on Windows using the default code page, the size of the file will be 28 bytes.
If you now change the code page to UTF-16 and save the file again, the file size will be 58 bytes: two
bytes for each character, plus two bytes for the byte-order mark. Now switch the code page back to
the default Windows code page and reload the UTF-16 file to see the difference in the editor. CVD
will display all code pages that are available in the JVM you’re running it on. The first code page in
the list is the default code page of your system. This is also CVD’s default if you don’t make a specific
choice. Your code page selection will be remembered in CVD’s ini file.

Load Color Settings

Load previously saved color settings from a file (see Tools/Customize Annotation Display). It is
highly recommended that you only load automatically generated files. Strange things may happen
if you try to load the wrong file format. On startup, the program attempts to load the last color
settings file that you loaded or saved during a previous session. If you intend to use the same color
settings as the last time you ran the program, there is therefore no need to manually load a color
settings file.

Save Color Settings

Save your customized color settings (see Tools/Customize Annotation Display). The file is a Java
properties file, and as such, reasonably transparent. What is not transparent is the encoding of the
colors (integer encoding of 24-bit RGB values), so changing the file by hand is not really
recommended.

Read Type System File

Load a type system file. This allows you to load an XCAS file without having to have access to the
corresponding annotator.

Write Type System File

Create a type system file from the currently loaded type definitions. In addition, you can save the
current CAS as a XCAS file (see below). This allows you to later load the type system and XCAS to
view the CAS without having to rerun the annotator.

Read XMI CAS File

Read an XMI CAS file. Important: XMI CAS is a serialization format that serializes a CAS without
type system and index information. It is therefore impossible to read in a stand-alone XMI CAS file.
XMI CAS files can only be interpreted in the context of an existing type system. Consequently, you
need to first load the Analysis Engine that was used to create the XMI file, to be able to load that
XMI file.

Write XMI CAS File

Writes the current analysis out as an XMI CAS file.

Read XCAS File

Read an XCAS file. Important: XCAS is a serialization format that serializes a CAS without type
system and index information. It is therefore impossible to read in a stand-alone XCAS file. XCAS
files can only be interpreted in the context of an existing type system. Consequently, you need to
load the Analysis Engine that was used to create the XCAS file to be able to load it. Loading a XCAS
file without loading the Analysis Engine may produce strange errors. You may get syntax errors on

39

loading the XCAS file, or worse, everything may appear to go smoothly but in reality your CAS may
be corrupted.

Write XCAS File

Writes the current analysis out as an XCAS file.
Exit

Exits the program. Your preferences will be saved.

5.4.2. The Edit Menu

File E:H| Run To

Anal u“du Ctrl-Z

CAY cut ctrx
Copy cCtil-C
Paste Ctrl-v

The "Edit" menu provides a standard text editing menu with Cut, Copy and Paste, as well as
unlimited Undo.

Note that standard keyboard accelerators Ctrl-X, Ctrl-C, Ctrl-V and Ctrl-Z can be used for Cut, Copy,
Paste and Undo, respectively. The text area supports other standard keyboard operations such as
navigation HOME, Ctrl-HOME etc., as well as marking text with Shift- <ArrowKey>.

5.4.3. The Run Menu

"“CAS Visual Debugger (CVD)

File Edit i_tm.| Tools Help

rAnalysis H Load AE Ctrl-L

CAS Index Run HmmTagger TAE Ctrl-R

o= 502N Run HmmTagger TAE on CAS Crl-
o= Annoti

Run collectionProcessComplete
Performance report

Recently used ... F
Language F
Set data path

In the Run menu, you can load and run text analysis engines.

Load AE

Loads and initializes a text analysis engine. Choosing this menu item will display a file open dialog
where you should choose an XML descriptor of a Text Analysis Engine to process the current text.
Even if the analysis engine runs fast, this will take a while, since there is a lot of setup work to do
when a new TAE is created. So be patient. When you develop a new annotator, you will often need
to recompile your code. Gladis will not reload your annotator code. When you recompile your code,

60

you need to terminate the GUI and restart it. If you only make changes to the XML descriptor, you
don’t need to restart the GUI Simply reload the XML file.

Run AE

Before you have (successfully) loaded a TAE, this menu item will be disabled. After you have loaded
a TAE, it will be enabled, and the name changes according to the name of the TAE you have loaded.
For example, if you’ve loaded "The World’s Fastest Parser", you will have a menu item called "Run
The World’s Fastest Parser". When you choose the item, the TAE is run on whatever text you have
currently loaded. After a TAE has run successfully, the index window in the upper left-hand corner
of the screen should be updated and show the indexes that were created by this run. We will have
more to say about indexes and what to do with them later.

Run AE on CAS

This allows you to run an analysis engine on the current CAS. This is useful if you have loaded a
CAS from an XCAS file, and would like to run further analysis on it.

Run collectionProcessComplete

When you select this item, the analysis engine’s collectionProcessComplete() method is called.

Performance Report

After you’ve run your analysis, you can view a performance report. It will show you where the time
went: which component used how much of the processing time.

Recently used

Collects a list of recently used analysis engines as a short-cut for loading.

Language

Some annotators do language specific processing. For example, if you run lexical analysis, the
results may be quite different depending on what the analysis engine thinks the language of the
document is. With this menu item, you can manually set the document language. Alternatively, you
can use an automatic language identification annotator. If the analysis engines you’re working with
are language agnostic, there is no need to set the language.

5.4.4. The tools menu

The tools menu contains some assorted utilities, such as the log file viewer. Here you can also set
the log level for UIMA. A more detailed description of some of the menu items follows below.

View Type System

61

uima.cas. Lnng
uima.cas.Double
uima.cas.5ofa

9 uima.cas. AnnotationBase

¢ uima.tcas Annotation
uima.tcas.Documents

example. Emaildddre

[»

q

example PersonTitle] =| -

example.Mame
aorg.apache.uima.exa
arg.apache.uima.exa

[«]

M | IC

| Feature

Yalue Type

Defined On

§§ sofa uima.cas.Sofa uima.cas. Annotation..
§§ begin |uima.cas.Integer wuimatcas.Annotation
§§ end uima.cas.Integer uimatcas.Annotation
JlKind |example.PersonTitleKind |example.PersonTitle

Brings up a new window that displays the type system. This menu item is disabled until the first
time you have run an analysis engine, since there is no type system to display until then. An

example is shown above.

You can view the inheritance tree on the left by expanding and collapsing nodes. When you select a
type, the features defined on that type are displayed in the table on the right. The feature table has
three columns. The first gives the name of the feature, the second one the type of the feature (i.e.,
what values it takes), and the third column displays the highest type this feature is defined on. In

this example, the features "begin" and "end" are inherited from the built-in annotation type.

In the options menu, you can configure if you want to see inherited features or not (not yet

implemented).

Show Selected Annotations

& AnnotationIndex - nlu.ne.NamedEnktity =

WisEln Donald H. REumsteld has been moving to strenathen his contral over
the m|l|tar"g.rs intellinence apparatus, potentially setting up a turfwar for dominance among
American intellinence officials. Mr. Eumsteld has also bheen pushing to expand the role of |

=10 x|

While the House and Senate intelligence oversight committee have received classified =
information about planned covert operations against [[E]
lavvmakers howe the agency and the Bush administration see those operations fitting into
the larger war on , or the global war an terrorism, Condressional officials said.

"“What they haven‘ttnld s is how does the intelligence piece fit into the larger offensive
agamst of how do these extra demands un our intellinence capahilities effect our
cnmmltmenttn the wear on terrorism in SlekElglE=ely

" gaid one official.

Congressional leaders complained that they have been left in the dark on how the
intellinence community will e used just as they are ahout to debate a resolution to
support war with .

Congressional leaders said the decision to fight the Condressional request may stem
fram a fear of exposing divisions within the intellinence community over the

administration's strateay, perhaps including a debate between the agency and the
Fentagon over the military's role in intelligence operations in .

|, the C.1A. has nottold

Figure 23. Annotations produced by a statistical named entity tagger

To enable this menu, you must have run an analysis engine and selected the °

62

"AnnotationIndex" or

one of its subnodes in the upper left hand corncer of the screen. It will bring up a new text window
with all selected annotations marked up in the text.

Figure 23 shows the results of applying a statistical named entity tagger to a newspaper article.
Some annotation colors have been customized: countries are in reverse video, organizations have a
turquois background, person names are green, and occupations have a maroon background. The
default background color is yellow. This color is also used if there is more than one annotation
spanning a certain text. Clearly, this display is only useful if you don’t have any overlapping
annotations, or at least not too many.

This menu item is also available as a context menu in the Index Tree area of the main window. To
use it, select the annotation index or one of its subnodes, right-click to bring up a popup menu, and
select the only item in the popup menu. The popup menu is actually a better way to invoke the
annotation display, since it changes according to the selection in the Index Tree area, and will tell
you if what you’ve selected can be displayed or not.

5.5. The Main Display Area

The main display area has three sub-areas. In the upper left-hand corner is the index display,
which shows the indexes that were defined in the AE, as well as the types of the indexes and their
subtypes. In the lower left-hand corner, the content of indexes and sub-indexes is displayed (FS
display). Clicking on any node in the index display will show the corresponding feature structures
in the FS display. You can explore those structures by expanding the tree nodes. When you click on
a node that represents an annotation, clicking on it will cause the corresponding text span to
marked in the text display.

63

File Edit Bun Tools Help

-Analysis Results ——— |~ClcodeApacheUIMA wimaj-examples'srcimain'data\Apache
CAS Index Repository Welcome to Apache UIMA (Unstructured Infarmation E
o= Sofalndex [0] Management Architecture), a incubataor project of the
o Annaotationindex [443] Apache Software Foundation (ASF).

Curgoal is a thriving community of users and
developers of LIMA framewarks, supparting
components for analysing unstructured content such as
text, audio and video.

What is LIMA?

Annotationindex - uimatcas A
T [0..99]
o= [0] = uima.tcas.Docum
o= [1] = arg.apache.uima.
o= [2] = arg.apache.uima.
o= [3] = arg.apache.uima.
[4] = example. Name|
o= 50f3 = Uima.cas. 5o
begin=12
end=2 LIMA enables such an application to be decomposed
o= [3] = arg.apache.uima. into components, for example "language identification”
o [6] = org.apache.uima.g = || ||| -= "language specific segmentation” -= "sentence
4| M | |] boundary detection” -= "entity detection (person/place | =

I[1 3:30:13] Done running AE Agaregate TAE - Tokenizer, Mame Recog |UIMA_Analysis_||n: 12- 23

nstructured Information Management applications are
software systems that analyze large volumes of
unstructured information in order to discover knowledge
thatis relevantto an end user.

LIMA is a framewark and SDK for developing such
applications. An example LIM application might ingest
plain text and identify entities, such as persons, places,
arganizations; or relations, such as warks-for ar
located-at.

Figure 24. State of GUI after running an analysis engine

Figure 24 shows the state after running the UIMA_Analysis_Example.xml aggregate from the uimaj-
examples project. There are two indexes in the index display, and the annotation index has been
selected. Note that the number of structures in an index is displayed in square brackets after the
index name.

Since displaying thousands of sister nodes is both confusing and slow, nodes are grouped in powers
of 10. As soon as there are no more than 100 sister nodes, they are displayed next to each other.

In our example, a name annotation has been selected, and the corresponding token text is
highlighted in the text area. We have also expanded the token node to display its structure (not
much to see in this simple example).

In Figure 24, we selected an annotation in the FS display to find the corresponding text. We can also
do the reverse and find out what annotations cover a certain point in the text. Let’s go back to the
name recognizer for an example.

64

File Edit Bun Tools Help
-Analysis Results

CAS Index Repository
= Sofalndex [0]
o Annotationindex [443]

Annotationindex - uimatcas A

T [0..99]
o= [0] = uima.tcas.Docum
o= [1] = arg.apache.uima.
o= [2] = arg.apache.uima.
o= [3] = arg.apache.uima.
o= [d] = example.Mame
o= [5] = arg.apache.uima.
o= [6] = arg.apache.uima.
o= [7] = arg.apache.uima.
o= [8] = example.Mame
o= [9] = arg.apache.uima.

4 ll | | ¥]

[4]

with some suppaort for Perl, Python and TCL.

Apache UIMA mailing lists:

Users - uima-user@incubator.apache.org
Developers - uima-dev@incubator.apache.org
Commits - uima-commits@incubator.apache.org

Apache UIMA project committers:

Michael Baessler

-Clcode'ApacheUlMALimaj-examples'srcimain'data\Apache

il

Position: 2267
[0] = vima.tcas.DocumentAnnotation

[402] = example.Name

[37 1] = org.apache.uima.examples.tokenizer.Sentence

[403] = org.apache.uima.examples.tokenizer.Token

Ken Coar (A5F member and Vice President)

Sam Ruby (ASF memben

I[1 3:30:13] Done running AE Agaregate TAE - Tokenizer, Mame Recogn |LUIMA_Analysis_

r 2267

Figure 25. Finding annotations for a specific location in the text

We would like to know if the Michael Baessler has been recognized as a name. So we position the
cursor in the corresponding text span somewhere, then right-click to bring up the context menu

telling us which annotations exist at this point. An example is shown in Figure 25.

65

File Edit Bun Tools Help
-Analysis Results ——— |~ClcodeApacheUIMA wimaj-examples'srcimain'data\Apache

CAS Index Repository with some suppaort for Perl, Python and TCL. -

= Sofalndex [0]

o Annotationindex [443]
Apache UIMA mailing lists:

Users - uima-user@incubator.apache.org
Developers - uima-dev@incubator.apache.org
Commits - uima-commits@incubator.apache.org

o= [94] = arg.apache.uimal-®] Apache UIMA project committers:

o= [95] = arg.apache.uima

o= [96] = org.apache.uima Michael Elaesslerl

&= [97] = arg.apache.uima Edward Epstein

&= [98] = aorg.apache.uima Thilo Goetz

o= [989] = aorg.apache.uima Adam Lally »
o= [100..199] Marshall Schor
o= [200..2949] =]
o= [300..3949] | L
o= [400] = aorg.apache.uima.ex Apache UIMA project Mentors:
e [401]= arg.apache.uima.ex |
o= [402] = example.Mame Il Ken Coar ¢ASF member and Vice President)

4 ll | [»] Sam Ruby (ASF member) ~

I[1 3:30:13] Done running AE Aggregate TAE - Tokenizer, Mame Rec || UIMA_Analysis_||2267 - 2283

Figure 26. Selecting an annotation from the context menu will highlight thatannotation in the FS display

At this point (Figure 25), we only know that somewhere around the text cursor position (not visible
in the picture), we discovered a name. When we select the corresponding entry in the context
menu, the name annotation is selected in the FS display, and its covered text is highlighted. Figure
26 shows the display after the name node has been selected in the popup menu.

We’re glad to see that, indeed, Michael Baessler is considered to be a name. Note that in the FS
display, the corresponding annotation node has been selected, and the tree has been expanded to
make the node visible.

NB that the annotations displayed in the popup menu come from the annotations currently
displayed in the FS display. If you didn’t select the annotation index or one of its sub-nodes, no
annotations can be displayed and the popup menu will be empty.

5.5.1. The Status Bar

At the bottom of the screen, some useful information is displayed in the status bar. The left-most
area shows the most recent major event, with the time when the event terminated in square
brackets. The next area shows the file name of the currently loaded XML descriptor. This area
supports a tool tip that will show the full path to the file. The right-most area shows the current
cursor position, or the extent of the selection, if a portion of the text has been selected. The
numbers correspond to the character offsets that are used for annotations.

66

5.5.2. Keyboard Navigation and Shortcuts

The GUI can be completely navigated and operated through the keyboard. All menus and menu
items support keyboard mnemonics, and some common operations are accessible through
keyboard accelerators.

You can move the focus between the three main areas using Tab (clockwise) and Shift-Tab
(counterclockwise). When the focus is on the text area, the Tab key will insert the corresponding
character into the text, so you will need to use Ctrl-Tab and Ctr1-Shift-Tab instead. Alternatively,
you can use the following key bindings to jump directly to one of the areas: Ctr1-T to focus the text
area, Ctr1-I for the index repository frame and Ctr1-F for the feature structure area.

Some additional keyboard shortcuts are available only in the text area, such as Ctr1-X for Cut, Ctrl-
C for Copy, Ctrl-V for Paste and Ctrl-Z for Undo. The context menu in the text area can be evoke
through the Alt-Enter shortcut. Text can be selected using the arrow keys while holding the Shift
key.

The following table shows the supported keyboard shortcuts.

Table 2. Keyboard shortcuts

Shortcut Action Scope
Ctr1-0 Open text file Global
Ctri-S Save text file Global
Ctri-L Load AE descriptor Global
Ctr1-R Run current AE Global
Ctri-I Switch focus to index repository Global
Ctri-T Switch focus to text area Global
Ctri-F Switch focus to FS area Global
Ctri-X Cut selection Text
Ctrl-C Copy selection Text
Ctri-v Paste selection Text
Ctr1-Z Undo Text
Alt-Enter Show context menu Text

67

Chapter 6. Eclipse Analysis Engine
Launcher’s Guide

The Analysis Engine Launcher is an Eclipse plug-in that provides debug and run support for
Analysis Engines directly within eclipse, like a Java program can be debugged. It supports most of
the descriptor formats except CPE, UIMA AS and some remote deployment descriptors.

Main !“RE] ‘. Classpath] B Environment] = Cummnn]

Project:

[Tesﬂ] Browse ...
Descriptor:

desc.xml Browse ...
Input Resource:

inputDir Browse ...

EI Recursively, read all files under each directory

Input Format:

() CASes (XMI or XCAS format)

) Plain Text, encoding: |UTF-& ']
Qutput Folder:

outDir Browse ...

] Clear the output folder

6.1. Creating an Analysis Engine launch configuration

To debug or run an Analysis Engine a launch configuration must be created. To do this select "Run
- Run Configurations" or "Run — Run Configurations" from the menu bar. A dialog will open
where the launch configuration can be created. Select UIMA Analysis Engine and create a new
configuration via pressing the New button at the top, or via the New button in the context menu.
The newly created configuration will be automatically selected and the Main tab will be displayed.

The Main tab defines the Analysis Engine which will be launched. First select the project which
contains the descriptor, then choose a descriptor and select the input. The input can either be a
folder which contains input files or just a single input file, if the recursively check box is marked
the input folder will be scanned recursively for input files.

The input format defines the format of the input files, if it is set to CASes the input resource must be
either in the XMI or XCAS format and if it is set to plain text, plain text input files in the specified
encoding are expected. The input logic filters out all files which do not have an appropriate file
ending, depending on the chosen format the file ending must be one of .xcas, .xmi or .txt, all other
files are ignored when the input is a folder, if a single file is selected it will be processed
independent of the file ending.

The output directory is optional, if set all processed input files will be written to the specified

68

directory in the XMI CAS format, if the clear check box is marked all files inside the output folder
will be deleted, usually this option is not needed because existing files will be overwritten without
notice.

The other tabs in the launch configuration are documented in the eclipse documentation, see the
"Java development user guide — Tasks —» Running and Debugging".

6.2. Launching an Analysis Engine

To launch an Analysis Engine go to the previously created launch configuration and click on
"Debug" or "Run" depending on the desired run mode. The Analysis Engine will now be launched.
The output will be shown in the Console View. To debug an Analysis Engine place breakpoints
inside the implementation class. If a breakpoint is hit the execution will pause like in a Java
program.

69

Chapter 7. Cas Editor User’s Guide

7.1. Introduction

The CAS Editor is an Eclipse based annotation tool which supports manual and automatic
annotation (via running UIMA annotators) of CASes stored in files. Currently only text-based CAS
are supported. The CAS Editor can visualize and edit all feature structures. Feature Structures
which are annotations can additionally be viewed and edited directly on text.

ann Cas Editor - Java/demo2.xmi - Eclipse SDK —
= & | | 4 v v v v T @ Cas Edmor "
[.ﬁ Corpus Explorer “ 25 Outline FeatureStructure View
» i ava In o speech in Cleveland on Wednesday, Mr E will also moke o case for the B2 =S =S e i
g nest package of roughly 3188 billion in expanded business tax cuts and infrastructure
8B a spending disclosed by the White House in bits ond pieces over the past few doys. Tex
I st Annatarion
¥ Drganization
White House
T Parson
Oibama
[l edin view A+ [l edit view A+
Feature Walue Feamire Waluse -
(i annosatian Styles A,
Type SEyle

__ DocementAnnotation BRACKET

i Grganization BACKCROUND

i+ Parson BACKCROUND

=1 Amnatation SOUICCLES
- AnnoTatan

7.2. Launching the Cas Editor

To open a CAS in the Cas Editor it needs a compatible type system and styling information which
specify how to display the types. The styling information is created automatically by the Cas Editor;
but the type system file must be provided by the user.

A CAS in the xmi or xcas format can simply be opened by clicking on it, like a text file is opened
with the Eclipse text editor.

7.2.1. Specifying a type system

The Cas Editor expects a type system file at the root of the project named TypeSystem.xml. If a type
system cannot be found, this message is shown:

70

Q]9 18 5l o
\\; | demo2.xmi 2

Cannot find type system!
Please place a valid type system in this path:
fUsers/joern,/dev/uima/runtime-EclipseApplication/|ava/TypeSystem.xml

I: Choose Type System ... j

If the type system file does not exist in this location you can point the Cas Editor to a specific type
system file. You can also change the default type system location in the properties page of the
Eclipse project. To do that right click the project, select Properties and go to the UIMA Type System
tab, and specify the default location for the type system file.

After the Cas Editor is opened switch to the Cas Editor Perspective to see all the Cas Editor related

views.

7.3. Annotation editor

The annotation editor shows the text with annotations and provides different views to show
aspects of the CAS.

7.3.1. Editor

After the editor is open it shows the default sofa of the CAS. (Displaying another sofa is right now
not possible.) The editor has an associated, changeable CAS Type. This type is called the editor
"mode". By default the editor only shows annotation of this type. Actions and views are sensitive to
this mode. The next screen shows the display, where the mode is set to "Person™:

| demo.xmi 22

In a speech in Cleveland on Wednesday, Mr. Obama will also make a case for the
package of roughly $18@ billion in expanded business tax cuts and infrastructure
spending disclosed by the White House in bits and pieces over the past few days.

To change the mode for the editor, use the "Mode" menu in the editor
context menu.
To open the context menu right click somewhere on the text.

71

PR IRA e FEALL

Annotate
Quick Annotate
Delete Annotation

Show Annotations

fred
)
> |
Annotation
> DocumentAnnotation
'~ Organization

T ———————
3 4 W@ Edit View a3
” Feature Value

The current mode is displayed

in the status line at the bottom and in the Style View.

It’s possible to work with more than one annotation type at a time; the mode just selects the default

annotation type which can be marked with the fewest keystrokes. To show annotations of other
types, use the "Show" menu in the context menu.

Quick Annotate
Delete Annotation
Mode

Show Annotations

(o]

P |
[

> |
[Annotation

. DocumentAnnotation
'+ Organization .

2+ W@ Edit View

v Person |:

Feature

Value

([¢

Alternatively, you may select the annotation types to be shown in the Style View.

-
@ Annotation Styles

-

v

a,
Type Style -

[] DocumentAnnotation BRACKET

¥ Organization BACKGROUND

=]

The editor will show the additional selected types.

72

=
[] demo.xmi 52

In a speech in Cleveland on Wednesday, Mr. Obama will also make a case for the
package of roughly $18@ billion in expanded business tax cuts and infrastructure
spending disclosed by the White House in bits and pieces over the past few da}fi

The annotation renderer and rendering layer can be changed in the
Properties dialog.
After the change all editors which share the same type system will be updated.

The editor automatically selects annotations of the editor mode type that are near the cursor. This
selection is then synchronized or displayed in other views.

To create an annotation manually using the editor, mark a piece of text and then press the enter
key. This creates an annotation of the type of the editor mode, having bounds corresponding to the
selection. You can also use the "Quick Annotate" action from the context menu.

It is also possible to choose the annotation type; press shift + enter (smart insert) or click on
"Annotate” in the context menu for this. A dialog will ask for the annotation type to create; either
select the desired type or use the associated key shortcut. In the screen shot below, pressing the "p"
key will create a Person annotation for "Obama".

d on Wednesday, Mr. Oboma will also make a case for the
billich in expendad hucinace hawv cuke and jpfrastructure
he White House } past few days.

[d] DocumentAnnotation
[o] Organization
[p] Person

To delete an annotation, select it and press the delete key. Only annotations of the editor mode can
be deleted with this method. To delete non-editor mode annotations use the Outline View.

For annotation projects you can change the font size in the editor. The default font size is 13. To
change this open the Eclipse preference dialog, go to "UIMA Annotation Editor".

7.3.2. Configure annotation styling

The Cas Editor can visualize the annotations in multiple highlighting colors and with different
annotation drawing styles. The annotation styling is defined per type system. When its changed, the
appearance changes in all opened editors sharing a type system.

The styling is initialized with a unique color for every annotation type and every annotation is
drawn with Squiggles annotation style. You may adjust the annotation styles and coloring
depending on the project needs.

73

Type
| DocumentAn
E Organization

[=] Annotation

-
@Annntntinn Styles k

“ Person BACKGROUND

-

Style
notation BRACKET
BACKGROUND

SQUIGGLES

The Cas Editor offers a property page to edit the styling. To open this property page click on the
"Properties" button in the Styles view.

The property page can be seen below. By clicking on one of the annotation types, the color, drawing
style and drawing layer can be edited on the right side.

P T e N Y

Preferences
St'yrles .S-t"'IES * r v
Annotation types:
Type : Layer Style: | BACKGROUND Y
uima.tcas.DocumentAnnotation (] . o
wima.sample.Organization i) i
uima.sample.Person] Lolor @
uima.tcas. Annotation]
[Maove layer up :l
f: Move layer down j

f: Restore Defaults :l f: Apply :l

@

[Cancel :l [0K :l

The annotations can be visualized with one the following annotation stlyes:

Table 3. Style Table

Style
BACKGROUND

TEXT_COLOR

74

Sample Description

image::images/tools/tools.casedi The background is drawn in the
tor/Style-Background.png[] annotation color.

image::images/tools/tools.casedi The text is drawn in the
tor/Style-TextColor.png[] annotation color.

Style

Sample

Description

TOKEN image::images/tools/tools.casedi The token type assumes that
tor/Style-Token.png[] token annotation are always
separated by a whitespace. Only
if they are not separated by a
whitespace a vertical line is
drawn to display the two token
annotations. The image on the
left actually contains three
annotations, one for "Mr", "."
and "Obama".
SQUIGGLES image::images/tools/tools.casedi Squiggles are drawen under the
tor/Style-Squiggles.pngl] annotation in the annotation
color.
BOX image::images/tools/tools.casedi A box in the annotation color is
tor/Style-Box.pngl] drawn around the annotation.
UNDERLINE image::images/tools/tools.casedi A line in the annotation color is
tor/Style-Underline.png[] drawen below the annotation.
BRACKET image::images/tools/tools.casedi An opening bracket is drawn

tor/Style-Bracket.png[]

around the first character of the

annotation and a closing
bracket is drawn around the
last character of the annotation.

The Cas Editor can draw the annotations in different layers. If the spans of two annotations overlap
the annotation which is in a higher layer is drawn over annotations in a lower layer. Depending on
the drawing style it is possible to see both annotations. The drawing order is defined by the layer
number, layer 0 is drawn first, then layer 1 and so on. If annotations in the same layer overlap its
not defined which annotation type is drawn first.

7.3.3. CAS view support

The Annotation Editor can only display text Sofa CAS views. Displaying CAS views with Sofas of
different types is not possible and will show an editor page to switch back to another CAS view. The
Edit and Feature Structure Browser views are still available and might be used to edit Feature
Structures which belong to the CAS view.

To switch to another CAS view, right click in the editor to open the context menu and choose "CAS
Views" and the view the editor should switch to.

7.3.4. Outline view

The outline view gives an overview of the annoations which are shown in the editor. The
annotation are grouped by type. There are actions to increase or decrease the bounds of the
selected annotation. There is also an action to merge selected annotations. The outline has second
view mode where only annotations of the current editor mode are shown.

75

':'i; i"i |ii i @ FeatureStructure ‘u’iew}

-+

- = e -
e T e T e T s R R 4

Text |

=~ Person
KAREM
JESPER
Ole Due Mielsen

= Date
1922
1922
1922
1970

=~ Token
vaffelisen
fra

Helsingar

Comonmnan

The style can be switched in the view menu, to a style where it only shows the annotations which
belong to the current editor mode.

7.3.5. Edit Views

The Edit Views show details about the currently selected annotations or feature structures. It is
possible to change primitive values in this view. Referenced feature structures can be created and
deleted, including arrays. To link a feature structure with other feature structures, it can be pinned
to the edit view. This means that it does not change if the selection changes.

(s il

Feature Value

p sofa [Sofa)
begin 739 |
end 749
day | null |
month null
year | null |

7.3.6. FeatureStructure View

The FeatureStructure View lists all feature structures of a specified type. The type is selected in the

76

type combobox.

It’s possible to create and delete feature structures of every type.

Outline Error Log [

Create 3

Type: com.calcucare.nlp.Token |‘:i

Token (id=25) m
Token (id=35)
Token (id=45)
Token (id=55)
Token (id=65)
Token (id=75)
Token (id=85)
Token (id=95)
Token (id=105)
Token (id=115)
Token (id=125)
Token (id=135)
Token (id=145)
Token (id=155)
Token (id=165)
Token (id=175)
Token (id=185)
Token (id=195)
Token (id=205)
Token (id=215)
Token (id=225) v

(3

7.4. Implementing a custom Cas Editor View

Custom Cas Editor views can be added, to rapidly create, access and/or change Feature Structures in
the CAS. While the Annotation Editor and its views offer support for general viewing and editing,
accessing and editing things in the CAS can be streamlined using a custom Cas Editor. A custom Cas
Editor view can be programmed to use a particular type system and optimized to quickly change or
show something.

Annotation projects often need to track the annotation status of a CAS where a user needs to mark
which parts have been annotated or corrected. To do this with the Cas Editor a user would need to
use the Feature Structure Browser view to select the Feature Structure and then edit it inside the
Edit view. A custom Cas Editor view could directly select and show the Feature Structure and offer a
tailored user interface to change the annotation status. Some features such as the name of the
annotator could even be automatically filled in.

The creation of Feature Structures which are linked to existing annotations or Feature Structures is
usually difficult with the standard views. A custom view which can make assumptions about the
type system is usually needed to do this efficiently.

77

7.4.1. Annotation Status View Sample

The Cas Editor provides the CasEditorView class as a base class for views which need to access the
CAS which is opened in the current editor. It shows a "view not available" message when the
current editor does not show a CAS, no editor is opened at all or the current CAS view is
incompatible with the view.

The following snippet shows how it is usually implemented:

public class AnnotationStatusView extends CasEditorView {

public AnnotationStatusView() {
super("The Annotation Status View is currently not available.");

}

@0verride
protected IPageBookViewPage doCreatePage(ICasEditor editor) {
ICasDocument document = editor.getDocument();

if (document != null) {
return new AnnotationStatusViewPage(editor);

}

return null;

}
}

The doCreatePage method is called to create the actual view page. If the document is null the editor
failed to load a document and is showing an error message. In the case the document is not null but
the CAS view is incompatible the method should return null to indicate that it has nothing to show.
In this case the "not available" message is displayed.

The next step is to implement the AnnotationStatusViewPage. That is the page which gets the CAS as
input and need to provide the user with a ui to change the Annotation Status Feature Structure.

public class AnnotationStatusViewPage extends Page {
private ICasEditor editor;

AnnotationStatusViewPage(ICasEditor editor) {
this.editor = editor;

}

public void createControl(Composite parent) {

// create ui elements here

78

ICasDocument document = editor.getDocument();
CAS cas = document.getCAS();

// Retrieve Annotation Status FS from CAS
// and initalize the ui elements with it

FeatureStructre statusFS;

// Add event listeners to the ui element
// to save an update to the CAS
// and to advertise a change

// Send update event
document.update(statusFS);

The above code sketches out how a typical view page is implemented. The CAS can be directly used
to access any Feature Structures or annotations stored in it. When something is modified
added/removed/changed that must be advertised via the ICasDocument object. It has multiple
notification methods which send an event so that other views can be updated. The view itself can
also register a listener to receive CAS change events.

79

Chapter 8. JCasGen User’s Guide

JCasGen reads a descriptor for an application (either an Analysis Engine Descriptor, or a Type
System Descriptor), creates the merged type system specification by merging all the type system
information from all the components referred to in the descriptor, and then uses this merged type
system to create Java source files for classes that enable JCas access to the CAS. Java classes are not
produced for the built-in types, since these classes are already provided by the UIMA SDK. (An
exception is the built-in type uima.tcas.DocumentAnnotation, see the warning below.)

If the components comprising the input to the type merging process have
different definitions for the same type name, JCasGen will show a warning,
and in some environments may offer to abort the operation. If you continue
past this warning, JCasGen will produce correct Java source files representing
the merged types (that is, the type definition containing all of the features
defined on that type by all of the components). It is recommended that you do
not use this capability (of having two different definitions for the same type
name, with different feature sets) since it can make it difficult to
combine/package your annotator with others.

WARNING

Also note that if your type system declares a custom version of the
uima.tcas.DocumentAnnotation built-in type, then JCasGen will generate a Java
source file for it. If you do this, you need to be aware of the issues discussed in
the JCas Reference.

JCasGen can be run in many ways. For Eclipse users using the Component Descriptor Editor, there’s
a button on the Type System Description page to run it on that type system. There’s also a jcasgen-
maven-plugin to use in maven build scripts. There’s a menu-driven GUI tool for it. And, there are
command line scripts you can use to invoke it.

There are several versions of JCasGen. The basic version reads an XML descriptor which contains a
type system descriptor, and generates the corresponding Java Class Models for those types. Variants
exist for the Eclipse environment that allow merging the newly generated Java source code with
previously augmented versions.

Input to JCasGen needs to be mostly self-contained. In particular, any types that are defined to
depend on user-defined supertypes must have that supertype defined, if the supertype is
uima.tcas.Annotation or a subtype of it. Any features referencing ranges which are subtypes of
uima.cas.String must have those subtypes included. If this is not followed, a warning message is
given stating that the resulting generation may be inaccurate.

JCasGen is typically invoked automatically when using the Component Descriptor Editor, but can
also be run using a shell script. These scripts can take 0, 1, or 2 arguments. The first argument is the
location of the file containing the input XML descriptor. The second argument specifies where the
generated Java source code should go. If it isn’t given, JCasGen generates its output into a subfolder
called JCas (or sometimes JCasNew — see below), of the first argument’s path.

The first argument, the input file, can be written as jar:<url>!{entry}, for example:
jar:http://www.foo.com/bar/baz.jar!/COM/foo/quux.class

80

ref.pdf#ugr.ref.jcas.merging_types_from_other_specs
ref.pdf#ugr.ref.jcas.documentannotation_issues
ref.pdf#ugr.ref.jcas.augmenting_generated_code

If no arguments are given to JCasGen, then it launches a GUI to interact with the user and ask for
the same input. The GUI will remember the arguments you previously used. Here’s what it looks
like:

% JCasGen AR

File Help

.m Unstructured Information Management Architecture

m. An Apache Incubator Project.

YWwielcome to the JCazGen toal. You can drag corners to resize.

C:/uima/examples/descriptors/analysis_engine/PersonTitlelnnotator. xml

Input File:

S temp
Output Directony: Browse

Status

[

Figure 27. JCasGen tool showing fields for input arguments

When running with automatic merging of the generated Java source with previously augmented
versions, the output location is where the merge function obtains the source for the merge
operation.

As is customary for Java, the generated class source files are placed in the appropriate subdirectory
structure according to Java conventions that correspond to the package (name space) name.

The Java classes must be compiled and the resulting class files included in the class path of your
application; you make these classes available for other annotator writers using your types, perhaps
packaged as an xxx.jar file. If the xxx.jar file is made to contain only the Java Class Models for the
CAS types, it can be reused by any users of these types.

8.1. Running stand-alone without Eclipse

There is no capability to automatically merge the generated Java source with previous versions,
unless running with Eclipse. If run without Eclipse, no automatic merging of the generated Java
source is done with any previous versions. In this case, the output is put in a folder called
“JCasNew” unless overridden by specifying a second argument.

The distribution includes a shell script/bat file to run the stand-alone version, called jcasgen.

8.2. Running stand-alone with Eclipse

If you have Eclipse and EMF (EMF = Eclipse Modeling Framework; both of these are available from
http://www.eclipse.org) installed (version 3 or later) JCasGen can merge the Java code it generates

81

http://www.eclipse.org

with previous versions, picking up changes you might have inserted by hand. The output (and
source of the merge input) is in a folder “JCas” under the same path as the input XML file, unless
overridden by specifying a second argument.

You must install the UIMA plug-ins into Eclipse to enable this function.

The distribution includes a shell script/bat file to run the stand-alone with Eclipse version, called
jcasgen_merge. This works by starting Eclipse in “headless” mode (no GUI) and invoking JCasGen
within Eclipse. You will need to set the ECLIPSE_HOME environment variable or modify the
jcasgen_merge shell script to specify where to find Eclipse. The version of Eclipse needed is 3 or
higher, with the EMF plug-in and the UIMA runtime plug-in installed. A temporary workspace is
used; the name/location of this is customizable in the shell script.

Log and error messages are written to the UIMA log. This file is called uima.log, and is located in the
default working directory, which if not overridden, is the startup directory of Eclipse.

8.3. Running within Eclipse

There are two ways to run JCasGen within Eclipse. The first way is to configure an Eclipse external
tools launcher, and use it to run the stand-alone shell scripts, with the arguments filled in. Here’s a
picture of a typical launcher configuration screen (you get here by navigating from the top menu:
Run —> External Tools —> External tools...).

82

Ihﬂ Extemal Tools %

2

Create, manage, and run configurations

Configuration MName: II'LII'I JCasGen

Y Art
%: =1 Main I£§‘? H.Efl‘E:Shlﬁ Qummnﬂl

= ﬂ Prog
% Location: Browse Workspace... |
e IC:\uima_1 0. 0hbinicasgen_merge bat
Browse File System... |
i e Browse Workspace... |
IC:"-a‘x.En:Iipse\wurkspan:e\:test
Browse File System... |
Arguments:
- \path4o-nput-descriptormy(Types xml ctemp Warables... |

Mote: Enclose an argument containing spaces using double-guotes ().
Mot applicable for varables.

¥ Bun tool in backaround

The second way (which is the normal way it’s done) to run within Eclipse is to use the Component
Descriptor Editor (CDE). This tool can be configured to automatically launch JCasGen whenever the
type system descriptor is modified. In this release, this operation completely regenerates the files,
even if just a small thing changed. For very large type systems, you probably don’t want to enable
this all the time. The configurator tool has an option to enable/disable this function.

8.4. Using the jcasgen-maven-plugin

For Maven builds, you can use the jcasgen-maven-plugin to take one or more top level descriptors
(Type System or Analysis Engine descriptors), merge them together in the standard way UIMA
merges type definitions, and produce the corresponding JCas source classes. These, by default, are
generated to the standard spot for Maven builds for generated files.

You can use ant-like include / exclude patterns to specify the top level descriptor files. If you set
<limitToProject> to true, then after a complete UIMA type system merge is done with all of the
types, including those that are imported, only those types which are defined within this Maven
project (that is, in some subdirectory of the project) will be generated.

To use the jcasgen-maven-plugin, specify it in the POM as follows:
<plugin>

83

84

<groupId>org.apache.uima</groupId>
<artifactId>jcasgen-maven-plugin</artifactId>
<version>2.4.1</version> <!-- change this to the latest version -->
<executions>
<execution>
<goals><goal>generate</goal></goals> <!-- this is the only goal -->
<!-- runs in phase process-resources by default -->
<configuration>

<!-- REQUIRED --»>
<typeSystemIncludes>
<!-- one or more ant-like file patterns
identifying top level descriptors -->
<typeSystemInclude>src/main/resources/MyTs.xml
</typeSystemInclude>
</typeSystemIncludes>

<!-- OPTIONAL -->
<!-- 3 sequence of ant-like file patterns
to exclude from the above include list -->
<typeSystemExcludes>
</typeSystemExcludes>

<!-- OPTIONAL -->

<!-- where the generated files go -->

<!-- default value:
${project.build.directory}/generated-sources/jcasgen" -->

<outputDirectory>

</outputDirectory>

<!-- true or false, default = false -->
<!-- if true, then although the complete merged type system
will be created internally, only those types whose
definition is contained within this maven project will be
generated. The others will be presumed to be
available via other projects. -->
<!-- OPTIONAL -->
<limitToProject>false</limitToProject>
</confiquration>
</execution>
</executions>
</plugin>

Chapter 9. UIMA Plugin for bnd

Bnd is a tooling suite for building OSGi bundles. Its primary function is generating OSGi meta data
by analyzing Java classes. However, when using UIMA, it may be necessary to add package imports
for packages that contain importable XML files such as UIMA type system descriptions to the OSGi
metadata. The UIMA plugin for bnd contributes an analyzer that checks for by-name imports in
UIMA XML files and adds the necessary package imports.

To use the this plugin, specify it in the POM as follows:

<plugin>
<groupId>biz.aQute.bnd</groupld>
<artifactId>bnd-maven-plugin</artifactId>
<executions>
<configuration>
<bnd>
-plugin.uima: org.apache.uima.tools.bnd.UimaBndPlugin
</bnd>
</confiquration>
</executions>
<dependencies>
<dependency>
<groupId>org.apache.uima</groupId>
<artifactId>uima-bnd-plugin</artifactld>
<version>3.6.1</version>
</dependency>
</dependencies>
</plugin>

If the plugin is active during a build, it will log a message like
[INFO] UIMA bnd plugin processed 5 imports

If you need more detailed logging, run the Maven build with the -X option.

85

https://bndtools.org

Chapter 10. PEAR Packager User’s Guide

A PEAR (Processing Engine ARchive) file is a standard package for UIMA (Unstructured Information
Management Architecture) components. The PEAR package can be used for distribution and reuse
by other components or applications. It also allows applications and tools to manage UIMA
components automatically for verification, deployment, invocation, testing, etc.

This chapter describes how to use the PEAR Eclipse plugin or the PEAR command line packager to
create PEAR files for standard UIMA components.

10.1. Using the PEAR Eclipse Plugin

The PEAR Eclipse plugin is automatically installed if you followed the directions in Setup Guide. The
use of the plugin involves the following two steps:
* Add the UIMA nature to your project

* Create a PEAR file using the PEAR generation wizard

10.1.1. Add UIMA Nature to your project
First, create a project for your UIMA component:

* Create a Java project, which would contain all the files and folders needed for your UIMA
component.

* Create a source folder called src in your project, and make it the only source folder, by clicking
on Properties in your project’s context menu (right-click), then select Java Build Path, then add
the src folder to the source folders list, and remove any other folder from the list.

* Specify an output folder for your project called bin, by clicking on Properties in your project’s
context menu (right-click), then select “Java Build Path”, and specify “your_project_name/bin” as
the default output folder.

Then, add the UIMA nature to your project by clicking on Add UIMA Nature in the context menu
(right-click) of your project. Click Yes on the Adding UIMA custom Nature dialog box. Click OK on the
confirmation dialog box.

86

ref.pdf#ugr.ref.pear
oas.pdf#ugr.ovv.eclipse_setup

Java - Eclipse Platform

Fle Edit Source Refactor Navigate Search Project Run Window Help
C3 -0-9 - B s | & eve ot
= =Plug-n Devel...
= Outine 3 =)
An outline 5 not available.
o]
Open in Mew Window
Cpen Type Heerarchy F4
i Copy Crl+C |
:- . 3 ﬁ e =
M Delete Delete
Source Alt4Shift+s »
Refactor Alt+shift+T *
gxy Import...
L5 Export...
= Refresh F5
corm. b, Lima, My AnalysisEragine Close Project
¥ Add UTMA Nature
Run 3

Figure 28. Screenshot of Adding the UIMA Nature to your project

Adding the UIMA nature to your project creates the PEAR structure in your project. The PEAR
structure is a structured tree of folders and files, including the following elements:

* Required Elements:

o

o

The * metadata™ folder which contains the PEAR installation descriptor and properties files.

The installation descriptor (metadata/install.xml")

* Optional Elements:

o

The desc folder to contain descriptor files of analysis engines, component analysis engines
(all levels), and other component (Collection Readers, CAS Consumers, etc).

The src folder to contain the source code
The bin folder to contain executables, scripts, class files, dlls, shared libraries, etc.
The 1ib folder to contain jar files.

The doc folder containing documentation materials, preferably accessible through an
index.html.

The data folder to contain data files (e.g. for testing).
The conf folder to contain configuration files.
The resources folder to contain other resources and dependencies.

Other user-defined folders or files are allowed, but should be avoided.

87

For more information about the PEAR structure, please refer to the Processing Engine Archive
section.

Root

Install xml

desc

| |

SIc

E

— lib

doc

conf
data

i

|

resources

|

Figure 29. The Pear Structure

10.1.2. Using the PEAR Generation Wizard

Before using the PEAR Generation Wizard, add all the files needed to run your component
including descriptors, jars, external libraries, resources, and component analysis engines (in the
case of an aggregate analysis engine), etc. Do not add JARs for the UIMA framework, however.
Doing so will cause class loading problems at run time.

If you're using a Java IDE like Eclipse, instead of using the output folder (usually bin as the source of
your classes, it’s recommended that you generate a Jar file containing these classes.

Then, click on “Generate PEAR file” from the context menu (right-click) of your project, to open the
PEAR Generation wizard, and follow the instructions on the wizard to generate the PEAR file.

The Component Information page

The first page of the PEAR generation wizard is the component information page. Specify in this
page a component ID for your PEAR and select the main Analysis Engine descriptor. The descriptor
must be specified using a pathname relative to the project’s root (e.g. “desc/MyAE.xml”). The
component id is a string that uniquely identifies the component. It should use the JAVA naming
convention (e.g. org.apache.uima.mycomponent).

Optionally, you can include specific Collection Iterator, CAS Initializer (deprecated as of Version
2.1), or CAS Consumers. In this case, specify the corresponding descriptors in this page.

88

ref.pdf#ugr.ref.pear

= PEAR Generation Wizard

UIMA - Installation Descriptor - Component Information

Enter information about your UIMA component. The required fields are indicated with a (%),
The descriptor must be specified using paths relative to the project’s root (e.g. “desc/MyTAE.xmil™).

Component Information
Component ID™: i com.ibm.uima.MyAnalysisEngine

Component Descriptor ®: | desc\MyAnnotatorDescriptor.xmi Browse... |

I~ Set optional descriptors (Optional)

Collection Iterator Descriptor: |

CAS Initislizer Descriptor: |

CAS Consumer Descriptor: |

Figure 30. The Component Information Page

The Installation Environment page

The installation environment page is used to specify the following:

» Preferred operating system
* Required JDK version, if applicable.

* Required Environment variable settings. This is where you specify special CLASSPATH paths.
You do not need to specify this for any Jar that is listed in the your eclipse project classpath
settings; those are automatically put into the generated CLASSPATH. Nor should you include
paths to the UIMA Framework itself, here. Doing so may cause class loading problem:s.

CLASSPATH segments are written here using a semicolon ";" as the separator; during PEAR
installation, these will be adjusted to be the correct character for the target Operating System.

In order to specify the UIMA datapath for your component you have to create an environment
variable with the property name uima.datapath. The value of this property must contain the
UIMA datapath settings.

Path names should be specified using macros (see below), instead of hard-coded absolute paths that
might work locally, but probably won’t if the PEAR is deployed in a different machine and

environment.

Macros are variables such as $main_root, used to represent a string such as the full path of a
certain directory.

89

These macros should be defined in the PEAR.properties file using the local values. The tools and
applications that use and deploy PEAR files should replace these macros (in the files included in the
conf and desc folders) with the corresponding values in the local environment as part of the
deployment process.

Currently, there are two types of macros:
* $main_root, which represents the local absolute path of the main component root directory
after deployment.

» $component_id$root, which represents the local absolute path to the root directory of the
component which has component_id as component ID. This component could be, for instance, a
delegate component.

PEAR Generation Wizard

UIMA - Installation Descriptor - Installation Environment

Set the nstallation environment options and the system properties (2.9, dasspath) for your component.
Note: ClassPath entries must start with Smaen_root)

T Setinstalabon environment options (Optonal)

Operating System: | _= | 208 varsin: | =]

[T Satsystem properbes (Optonal)

Property Name | Property Vakse
CLASSPATH Smain _rootfoin; $main_root/ib fcasTutorial jar;...
< >

< Back Next > Cancel

Figure 31. The Installation Environment Page

The PEAR file content page

The last page of the wizard is the “PEAR file Export” page, which allows the user to select the files to
include in the PEAR file. The metadata folder and all its content is mandatory. Make sure you
include all the files needed to run your component including descriptors, jars, external libraries,
resources, and component analysis engines (in the case of an aggregate analysis engine), etc. It’s
recommended to generate a jar file from your code as an alternative to building the project and
making sure the output folder (bin) contains the required class files.

Eclipse compiles your class files into some output directory, often named "bin" when you take the
usual defaults in Eclipse. The recommended practice is to take all these files and put them into a Jar
file, perhaps using the Eclipse Export wizard. You would place that Jar file into the PEAR 1ib
directory.

NOTE If you are relying on the class files generated in the output folder (usually called

90

bin) to run your code, then make sure the project is built properly, and all the
required class files are generated without errors, and then put the output folder
(e.g. $main_root/bin) in the classpath using the option to set environment variables,
by setting the CLASSPATH variable to include this folder (see the “Installation
Environment” page. Beware that using a Java output folder named "bin" in this case
is a poor practice, because the PEAR installation tools will presume this folder
contains binary executable files, and will adds this folder to the PATH environment
variable.

PEAR Generation Wizard

PEAR file

Export rescurces to & Pear file on the local fle system, %

- D'ﬁjr com ibm, uima. MyAnalysisEngine

[Fl= bin

Hi conf

Hi data

& desc

E& dac

* E'-E" b
Fl& metadata
[F& resources

H& =«

sekctTypes.. | seectAl | Deseiectar |

To pear flie: | o yPEARS \com.iben. uima. MyAnalyisEngre| | Browse... !

Opbions:
[¥ Compress the contents of the fe

ot | o |] emet |

Figure 32. The PEAR File Export Page

10.2. Using the PEAR command line packager

The PEAR command line packager takes some PEAR package parameter settings on the command
line to create an UIMA PEAR file.

To run the PEAR command line packager you can use the provided runPearPackager (.bat for
Windows, and .sh for Unix) scripts. The packager can be used in three different modes.

* Mode 1: creates a complete PEAR package with the provided information (default mode)
runPearPackager -compID <componentID>
-mainCompDesc <mainComponentDesc> [-classpath <classpath>]

[-datapath <datapath>] -mainCompDir <mainComponentDir>
-targetDir <targetDir> [-envVars <propertiesFilePath>]

91

The created PEAR file has the file name <componentID>.pear and is located in the <targetDir>.

Mode 2: creates a PEAR installation descriptor without packaging the PEAR file

runPearPackager -create -compID <componentID>
-mainCompDesc <mainComponentDesc> [-classpath <classpath>]
[-datapath <datapath>] -mainCompDir <mainComponentDir>
[-envVars <propertiesFilePath>]

The PEAR installation descriptor is created in the <mainComponentDir>/metadata directory.

Mode 3: creates a PEAR package with an existing PEAR installation descriptor

runPearPackager -package -compID <componentID>
-mainCompDir <mainComponentDir> -targetDir <targetDir>

The created PEAR file has the file name <componentID>.pear and is located in the <targetDir>.

The modes 2 and 3 should be used when you want to manipulate the PEAR installation descriptor
before packaging the PEAR file.

Some more details about the PearPackager parameters is provided in the list below:

92

<componentID>: PEAR package component ID.
<mainComponentDesc>: Main component descriptor of the PEAR package.

<classpath>: PEAR classpath settings. Use $main_root macros to specify path entries. Use ; to
separate the entries.

<datapath>: PEAR datapath settings. Use $main_root macros to specify path entries. Use ; to
separate the path entries.

<mainComponentDir>: Main component directory that contains the PEAR package content.
<targetDir>: Target directory where the created PEAR file is written to.

<propertiesFilePath>: Path name to a properties file that contains environment variables that
must be set to run the PEAR content.

Chapter 11. The PEAR Packaging Maven
Plugin

UIMA includes a Maven plugin that supports creating PEAR packages using Maven. When
configured for a project, it assumes that the project has the PEAR layout, and will copy the standard
directories that are part of a PEAR structure under the project root into the PEAR, excluding files
that start with a period ("."). It also will put the Jar that is built for the project into the lib/ directory
and include it first on the generated classpath.

The classpath that is generated for this includes the artifact’s Jar first, any user specified entries
second (in the order they are specified), and finally, entries for all Jars found in the lib/ directory (in
some arbitrary order).

11.1. Specifying the PEAR Packaging Maven Plugin

To use the PEAR Packaging Plugin within a Maven build, the plugin must be added to the plugins
section of the Maven POM as shown below:

<build>
<plugins>
<plugin>
<groupId>org.apache.uima</groupId>
<artifactId>PearPackagingMavenPlugin</artifactId>

<!-- if version is omitted, then -->
<!-- version is inherited from parent's pluginManagement section -->
<!-- otherwise, include a version element here -->

<!-- says to load Maven extensions
(such as packaging and type handlers) from this plugin -->
<extensions>true</extensions>
<executions>
<execution>

<phase>package</phase>

<!-- where you specify details of the thing being packaged -->

<configuration>

<classpath>
<!-- PEAR file component classpath settings -->
$main_root/1ib/sample.jar

</classpath>

<mainComponentDesc>
<!-- PEAR file main component descriptor -->
desc/${artifactId}.xml

</mainComponentDesc>

93

<componentId>
<!-- PEAR file component ID -->
${artifactId}

</componentId>

<datapath>
<!-- PEAR file UIMA datapath settings -->
$main_root/resources

</datapath>

</configuration>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>

</plugins>

</build>

To configure the plugin with the specific settings of a PEAR package, the <configuration> element
section is used. This sections contains all parameters that are used by the PEAR Packaging Plugin to
package the right content and set the specific PEAR package settings. The details about each
parameter and how it is used is shown below:

» <classpath> - This element specifies the classpath settings for the PEAR component. The Jar

94

artifact that is built during the current Maven build is automatically added to the PEAR
classpath settings and does not have to be added manually. In addition, all Jars in the lib
directory and its subdirectories will be added to the generated classpath when the PEAR is
installed.

Use $main_root variables to refer to libraries inside the PEAR package. For more
NOTE details about PEAR packaging please refer to the Apache UIMA PEAR
documentation.

<mainComponentDesc> - This element specifies the relative path to the main component descriptor
that should be used to run the PEAR content. The path must be relative to the project root. A
good default to use is desc/${artifactId}.xml.

<componentID> - This element specifies the PEAR package component ID. A good default to use is
${artifactld}.

<datapath> - This element specifies the PEAR package UIMA datapath settings. If no datapath
settings are necessary, this element can be omitted.

Use $main_root variables to refer libraries inside the PEAR package. For more
NOTE details about PEAR packaging please refer to the Apache UIMA PEAR
documentation.

For most Maven projects it is sufficient to specify the parameters described above. In some cases,
for more complex projects, it may be necessary to specify some additional configuration
parameters. These parameters are listed below with the default values that are used if they are not
added to the configuration section shown above.

» <mainComponentDir> - This element specifies the main component directory where the UIMA
nature is applied. By default this parameter points to the project root directory - ${basedir}.

» <targetDir> - This element specifies the target directory where the result of the plugin are
written to. By default this parameters points to the default Maven output directory -
${basedir}/target

11.2. Automatically including dependencies

A key concept in PEARSs is that they allow specifying other Jars in the classpath. You can optionally
include these Jars within the PEAR package.

The PEAR Packaging Plugin does not take care of automatically adding these Jars (that the PEAR
might depend on) to the PEAR archive. However, this behavior can be manually added to your
Maven POM. The following two build plugins hook into the build cycle and insure that all runtime
dependencies are included in the PEAR file.

The dependencies will be automatically included in the PEAR file using this procedure; the PEAR
install process also will automatically adds all files in the lib directory (and sub directories) to the
classpath.

The maven-dependency-plugin copies the runtime dependencies of the PEAR into the 1ib folder,
which is where the PEAR packaging plugin expects them.

<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>
<!-- Copy the dependencies to the 1ib folder for the PEAR to copy -->
<execution>
<id>copy-dependencies</id>
<phase>package</phase>
<goals>
<goal>copy-dependencies</goal>
</goals>
<configuration>
<outputDirectory>${basedir}/1lib</outputDirectory>
<overWriteSnapshots>true</overWriteSnapshots>
<includeScope>runtime</includeScope>
</confiquration>
</execution>
</executions>

95

</plugin>

</plugins>
</build>

The second Maven plug-in hooks into the clean phase of the build life-cycle, and deletes the 1ib
folder.

With this approach, the 1ib folder is automatically created, populated, and removed
NOTE during the build process. Therefore it should not go into the source control system
and neither should you manually place any jars in there.

<build>
<plugins>
<plugin>
<artifactId>maven-antrun-plugin</artifactId>
<executions>
<!-- Clean the libraries after packaging -->
<execution>
<id>CleanLib</id>
<phase>clean</phase>
<configuration>
<tasks>
<delete quiet="true"
failOnError="false">
<fileset dir="1ib" includes="**/*.jar"/>
</delete>
</tasks>
</confiquration>
<goals>
<goal>run</goal>
</goals>
</execution>
</executions>
</plugin>

</plugins>
</build>

11.3. Running from the command line

The PEAR packager can be run as a maven command. To enable this, you have to add the following
to your maven settings file:

<settings>

96

<pluginGroups>
<pluginGroup>org.apache.uima</pluginGroup>
</pluginGroups>

To invoke the PEAR packager using maven, use the command:

mvn uima-pear:package <parameters...>

The settings are the same ones used in the configuration above, specified as -D variables where the
variable name is pear.parameterName". For example:

mvn uima-pear:package -Dpear.mainComponentDesc=desc/mydescriptor.xml
-Dpear.componentId=foo

97

Chapter 12. PEAR Installer User’s Guide

PEAR (Processing Engine ARchive) is a new standard for packaging UIMA compliant components.
This standard defines several service elements that should be included in the archive package to
enable automated installation of the encapsulated UIMA component. The major PEAR service
element is an XML Installation Descriptor that specifies installation platform, component attributes,
custom installation procedures and environment variables.

The installation of a UIMA compliant component includes 2 steps: (1) installation of the component
code and resources in a local file system, and (2) verification of the serviceability of the installed
component. Installation of the component code and resources involves extracting component files
from the archive (PEAR) package in a designated directory and localizing file references in
component descriptors and other configuration files. Verification of the component serviceability is
accomplished with the help of standard UIMA mechanisms for instantiating analysis engines.

e L [Nalo
Be teb

ﬁ Unstructured Information Management Architecture

An Apache Feuboior Prapect

PEAR, File:

Instalation Directory;

There are two versions of the PEAR Installer. One is an interactive, GUI-based application which
puts up a panel asking for the parameters of the installation; the other is a command line interface
version where you pass the parameters needed on the command line itself. To launch the GUI
version of the PEAR Installer, use the script in the UIMA bin directory: runPearInstaller.bat or

runPearInstaller.sh. The command line is launched wusing runPearInstallerCli.cmd or
runPearInstallerCli.sh.

The PEAR Installer installs UIMA compliant components (analysis engines) from PEAR packages in
a local file system. To install a desired UIMA component the user needs to select the appropriate
PEAR file in a local file system and specify the installation directory (optional). If no installation

98

directory is specified, the PEAR file is installed to the current working directory. By default the
PEAR packages are not installed directly to the specified installation directory. For each PEAR a
subdirectory with the name of the PEAR’s ID is created where the PEAR package is installed to. If
the PEAR installation directory already exists, the old content is automatically deleted before the
new content is installed. During the component installation the user can read messages printed by
the installation program in the message area of the application window. If the installation fails,
appropriate error message is printed to help identifying and fixing the problem.

After the desired UIMA component is successfully installed, the PEAR Installer allows testing this
component in the CAS Visual Debugger (CVD) application, which is provided with the UIMA
package. The CVD application will load your UIMA component using its XML descriptor file. If the
component is loaded successfully, yow’ll be able to run it either with sample documents provided in
the <UIMA_HOME>/examples/data directory, or with any other sample documents. Running your
component in the CVD application helps to make sure the component will run in other UIMA
applications. If the CVD application fails to load or run your component, or throws an exception,
you can find more information about the problem in the uima.log file in the current working
directory. The log file can be viewed with the CVD.

PEAR Installer creates a file named setenv.txt in the <component_root>/metadata directory. This file
contains environment variables required to run your component in any UIMA application. It also
creates a PEAR descriptor file named <componentID>_pear.xml in the <component_root> directory that
can be used to directly run the installed pear file in your application.

The metadata/setenv.txt is not read by the UIMA framework anywhere. It’s there for use by non-
UIMA application code if that code wants to set environment variables. The metadata/setenv.txt is
just a "convenience" file duplicating what is in the XML.

The setenv. txt file has two special variables: the CLASSPATH and the PATH. The CLASSPATH is computed
from any supplied CLASSPATH environment variable, plus the jars that are configured in the PEAR
structure, including subcomponents. The PATH is similarly computed, using any supplied PATH
environment variable plus it includes the bin subdirectory of the PEAR structure, if it exists.

The command line version of the PEAR installer has one required argument: the path to the PEAR
file being installed. A second argument can specify the installation directory (default is the current
working directory). An optional argument, one of -c or -check or -verify, causes verification to be
done after installation, as described above.

99

ref.pdf#ugr.ref.pear.specifier

Chapter 13. PEAR Merger User’s Guide

The PEAR Merger utility takes two or more PEAR files and merges their contents, creating a new
PEAR which has, in turn, a new Aggregate analysis engine whose delegates are the components
from the original files being merged. It does this by (1) copying the contents of the input
components into the output component, placing each component into a separate subdirectory, (2)
generating a UIMA descriptor for the output Aggregate analysis engine and (3) creating an output
PEAR file that encapsulates the output Aggregate.

The merge logic is quite simple, and is intended to work for simple cases. More complex merging
needs to be done by hand. Please see the Restrictions and Limitations section, below.

To run the PearMerger command line utility you can use the runPearMerger scripts (.bat for
Windows, and .sh for Unix). The usage of the tooling is shown below:

runPearMerger 1st_input_pear_file ... nth_input_pear_file
-n output_analysis_engine_name [-f output_pear_file]

The first group of parameters are the input PEAR files. No duplicates are allowed here. The -n
parameter is the name of the generated Aggregate Analysis Engine. The optional -f parameter
specifies the name of the output file. If it is omitted, the output is written to
output_analysis_engine_name.pear in the current working directory.

During the running of this tool, work files are written to a temporary directory created in the user’s
home directory.

13.1. Details of the merging process

The PEARs are merged using the following steps:

1. A temporary working directory, is created for the output aggregate component.

2. Each input PEAR file is extracted into a separate 'input_component_name' folder under the
working directory.

3. The extracted files are processed to adjust the '$main_root' macros. This operation differs from
the PEAR installation operation, because it does not replace the macros with absolute paths.

4. The output PEAR directory structure, 'metadata’ and 'desc' folders under the working directory,
are created.

5. The UIMA AE descriptor for the output aggregate component is built in the 'desc' folder. This
aggregate descriptor refers to the input delegate components, specifying 'fixed flow' based on
the original order of the input components in the command line. The aggregate descriptor’s
‘capabilities’ and 'operational properties' sections are built based on the input components’
specifications.

6. A new PEAR installation descriptor is created in the 'metadata’ folder, referencing the new
output aggregate descriptor built in the previous step.

7. The content of the temporary output working directory is zipped to created the output PEAR,

100

and then the temporary working directory is deleted.

The PEAR merger utility logs all the operations both to standard console output and to a log file,
pm.log, which is created in the current working directory.

13.2. Testing and Modifying the resulting PEAR

The output PEAR file can be installed and tested using the PEAR Installer. The output aggregate
component can also be tested by using the CVD or DocAnalyzer tools.

The PEAR Installer creates Eclipse project files (.classpath and .project) in the root directory of the
installer PEAR, so the installed component can be imported into the Eclipse IDE as an external
project. Once the component is in the Eclipse IDE, developers may use the Component Descriptor
Editor and the PEAR Packager to modify the output aggregate descriptor and re-package the
component.

13.3. Restrictions and Limitations

The PEAR Merger utility only does basic merging operations, and is limited as follows. You can
overcome these by editing the resulting PEAR file or the resulting Aggregate Descriptor.

1
2.

The Merge operation specifies Fixed Flow sequencing for the Aggregate.

The merged aggregate does not define any parameters, so the delegate parameters cannot be
overridden.

No External Resource definitions are generated for the aggregate.
No Sofa Mappings are generated for the aggregate.

Name collisions are not checked for. Possible name collisions could occur in the fully-qualified
class names of the implementing Java classes, the names of JAR files, the names of descriptor
files, and the names of resource bindings or resource file paths.

The input and output capabilities are generated based on merging the capabilities from the
components (removing duplicates). Capability sets are ignored - only the first of the set is used
in this process, and only one set is created for the generated Aggregate. There is no support for
merging Sofa specifications.

No Indexes or Type Priorities are created for the generated Aggregate. No checking is done to
see if the Indexes or Type Priorities of the components conflict or are inconsistent.

You can only merge Analysis Engines and CAS Consumers.

Although PEAR file installation descriptors that are being merged can have specific XML
elements describing Collection Reader and CAS Consumer descriptors, these elements are
ignored during the merge, in the sense that the installation descriptor that is created by the
merge does not set these elements. The merge process does not use these elements; the output
PEAR’s new aggregate only references the merged components' main PEAR descriptor element,
as identified by the PEAR element:

<SUBMITTED_COMPONENT>

101

<DESC>the_component.xml</DESC>. ..
</SUBMITTED_COMPONENT>

102

	Apache UIMA™ - Tools
	UIMA Tools
	Chapter 1. Component Descriptor Editor User’s Guide
	1.1. Launching the Component Descriptor Editor
	1.2. Creating a New AE Descriptor
	1.3. Pages within the Editor
	1.3.1. Adjusting the display of pages

	1.4. Overview Page
	1.4.1. Implementation Details
	1.4.2. Runtime Information
	1.4.3. Overall Identification Information

	1.5. Aggregate Page
	1.5.1. Adding components more than once
	1.5.2. Adding or Removing components in a flow
	1.5.3. Adding remote Analysis Engines
	1.5.4. Connecting to Remote Services
	1.5.5. Finding Analysis Engines by searching
	1.5.6. Component Engine Flow

	1.6. Parameters Definition Page
	1.6.1. Using groups
	1.6.2. Adding or Editing a Parameter
	1.6.3. Parameter declarations for Aggregates

	1.7. Parameter Settings Page
	1.8. Type System Page
	1.8.1. Exporting

	1.9. Capabilities Page
	1.9.1. Sofa (and view) name mappings

	1.10. Indexes Page
	1.11. Resources Page
	1.11.1. Binding
	1.11.2. Resources with Aggregates
	1.11.3. Imports and Exports

	1.12. Source Page
	1.12.1. Source formatting – indentation

	1.13. Creating a Self-Contained Type System
	1.14. Creating Other Descriptor Components

	Chapter 2. Collection Processing Engine Configurator User’s Guide
	2.1. Limitations of the CPE Configurator
	2.2. Starting the CPE Configurator
	2.3. Selecting Component Descriptors
	2.4. Running a Collection Processing Engine
	2.5. The File Menu
	2.6. The Help Menu

	Chapter 3. Document Analyzer User’s Guide
	3.1. Starting the Document Analyzer
	3.2. Running an AE
	3.3. Viewing the Analysis Results
	3.4. Configuring the Annotation Viewer
	3.5. Interactive Mode
	3.6. View Mode

	Chapter 4. Annotation Viewer
	Chapter 5. CAS Visual Debugger
	5.1. Introduction
	5.1.1. Running CVD
	5.1.2. Command line parameters

	5.2. Error Handling
	5.3. Preferences File
	5.4. The Menus
	5.4.1. The File Menu
	5.4.2. The Edit Menu
	5.4.3. The Run Menu
	5.4.4. The tools menu
	View Type System
	Show Selected Annotations

	5.5. The Main Display Area
	5.5.1. The Status Bar
	5.5.2. Keyboard Navigation and Shortcuts

	Chapter 6. Eclipse Analysis Engine Launcher’s Guide
	6.1. Creating an Analysis Engine launch configuration
	6.2. Launching an Analysis Engine

	Chapter 7. Cas Editor User’s Guide
	7.1. Introduction
	7.2. Launching the Cas Editor
	7.2.1. Specifying a type system

	7.3. Annotation editor
	7.3.1. Editor
	7.3.2. Configure annotation styling
	7.3.3. CAS view support
	7.3.4. Outline view
	7.3.5. Edit Views
	7.3.6. FeatureStructure View

	7.4. Implementing a custom Cas Editor View
	7.4.1. Annotation Status View Sample

	Chapter 8. JCasGen User’s Guide
	8.1. Running stand-alone without Eclipse
	8.2. Running stand-alone with Eclipse
	8.3. Running within Eclipse
	8.4. Using the jcasgen-maven-plugin

	Chapter 9. UIMA Plugin for bnd
	Chapter 10. PEAR Packager User’s Guide
	10.1. Using the PEAR Eclipse Plugin
	10.1.1. Add UIMA Nature to your project
	10.1.2. Using the PEAR Generation Wizard
	The Component Information page
	The Installation Environment page
	The PEAR file content page

	10.2. Using the PEAR command line packager

	Chapter 11. The PEAR Packaging Maven Plugin
	11.1. Specifying the PEAR Packaging Maven Plugin
	11.2. Automatically including dependencies
	11.3. Running from the command line

	Chapter 12. PEAR Installer User’s Guide
	Chapter 13. PEAR Merger User’s Guide
	13.1. Details of the merging process
	13.2. Testing and Modifying the resulting PEAR
	13.3. Restrictions and Limitations

