Apache UIMA™ - UIMA Overview and
SDK Setup

Apache UIMA™ Development Community

Version 3.6.1

Copyright © 2006, 2021 The Apache Software Foundation

Copyright © 2004, 2006 International Business Machines Corporation

License and Disclaimer

The ASF licenses this documentation to you under the Apache License, Version 2.0 (the "License");
you may not use this documentation except in compliance with the License. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, this documentation and its contents are
distributed under the License on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Trademarks

All terms mentioned in the text that are known to be trademarks or service marks have been
appropriately capitalized. Use of such terms in this book should not be regarded as affecting the
validity of the the trademark or service mark.

http://www.apache.org/licenses/LICENSE-2.0

UIMA Overview and SDK Setup

1. UIMA Overview

1.1. Apache UIMA Project Documentation Overview
1.1.1. Overviews
1.1.2. Eclipse Tooling Installation and Setup
1.1.3. Tutorials and Developer’s Guides
1.1.4. Tools Users' Guides
1.1.5. References
1.1.6. Version 3 User’s guide
1.2. How to use the Documentation
1.3. Changes from UIMA Version 2

1.4. Migrating existing UIMA pipelines from Version 2 to Version 3

1.5. Apache UIMA Summary
1.5.1. General
1.5.2. Programming Language Support
1.5.3. Multi-Modal Support

1.6. Summary of Apache UIMA Capabilities

2. UIMA Conceptual Overview

2.1. UIMA Introduction
2.2. The Architecture, the Framework and the SDK
2.3. Analysis Basics
2.3.1. Analysis Engines, Annotators & Results
2.3.2. Representing Analysis Results in the CAS
The Annotation Type
Not Just Annotations
Multiple Views within a CAS
2.3.3. Using CASes and External Resources
2.3.4. Component Descriptors
2.4. Aggregate Analysis Engines
2.5. Application Building and Collection Processing
2.5.1. Using the framework from an Application
2.5.2. Graduating to Collection Processing
2.6. Exploiting Analysis Results
2.6.1. Semantic Search
2.6.2. Databases
2.7. Multimodal Processing in UIMA
2.8. Next Steps

3. Setting up the Eclipse IDE to work with UIMA

3.1. Installation

© O 00 00 00 3 U1 U1 U1 P

WoWw N NN NN NN NN NN DN R R R s s s s
O O ©W I 90 O b W WKk OO O W ©W o o o B OO o o O

3.1.1. Install Eclipse
3.1.2. Installing the UIMA Eclipse Plugins
3.1.3. Install the UIMA SDK
3.1.4. Installing the UIMA Eclipse Plugins, manually
3.1.5. Start Eclipse
Special startup parameter for Eclipse: -clean
3.2. Setting up Eclipse to view Example Code
3.3. Adding the UIMA source code to the jar files
3.4. Attaching UIMA Javadocs
3.5. Running external tools from Eclipse
4. UIMA Frequently Asked Questions (FAQ’s)
5. Known Issues

Glossary: Key Terms & Concepts

30
30
31
31
31
32
32
32
33
34
35
40
41

Chapter 1. UIMA Overview

The Unstructured Information Management Architecture (UIMA) is an architecture and software
framework for creating, discovering, composing and deploying a broad range of multi-modal
analysis capabilities and integrating them with search technologies. The architecture is undergoing
a standardization effort, referred to as the UIMA specification by a technical committee within
OASIS.

The Apache UIMA framework is an Apache licensed, open source implementation of the UIMA
Architecture, and provides a run-time environment in which developers can plug in and run their
UIMA component implementations and with which they can build and deploy UIM applications.
The framework itself is not specific to any IDE or platform.

It includes an all-Java implementation of the UIMA framework for the development, description,
composition and deployment of UIMA components and applications. It also provides the developer
with an Eclipse-based (http://www.eclipse.org/) development environment that includes a set of
tools and utilities for using UIMA. It also includes a C++ version of the framework, and enablements
for Annotators built in Perl, Python, and TCL.

This chapter is the intended starting point for readers that are new to the Apache UIMA Project. It
includes this introduction and the following sections:

» Section 1.1 provides a list of the books and topics included in the Apache UIMA documentation
with a brief summary of each.
» Section 1.2 describes a recommended path through the documentation to help get the reader up

and running with UIMA

The main website for Apache UIMA is http://uima.apache.org. Here you can find out many things,
including:

* how to download (both the binary and source distributions

* how to participate in the development

* mailing lists - including the user list used like a forum for questions and answers

* a Wiki where you can find and contribute all kinds of information, including tips and best
practices

* a sandbox - a subproject for potential new additions to Apache UIMA or to subprojects of it.
Things here are works in progress, and may (or may not) be included in releases.

¢ links to conferences

1.1. Apache UIMA Project Documentation Overview

The user documentation for UIMA is organized into several parts.

e Overviews - this documentation

* Eclipse Tooling Installation and Setup - also in this document

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uima
http://www.eclipse.org/
http://uima.apache.org

» Tutorials and Developer’s Guides
* Tools Users' Guides
* References

 Version 3 users-guide

The first 2 parts make up this book; the last 4 have individual books. The books are provided both
as (somewhat large) html files, viewable in browsers, and also as PDF files. The documentation is
fully hyperlinked, with tables of contents. The PDF versions are set up to print nicely - they have
page numbers included on the cross references within a book.

If you view the PDF files inside a browser that supports imbedded viewing of PDF, the hyperlinks
between different PDF books may work (not all browsers have been tested...).

The following set of tables gives a more detailed overview of the various parts of the
documentation.

1.1.1. Overviews

Overview of the Documentation What you are currently reading. Lists the
documents provided in the Apache UIMA
documentation set and provides a
recommended path through the documentation
for getting started using UIMA. It includes
release notes and provides a brief high-level
description of the different software modules
included in the Apache UIMA Project.

Conceptual Overview Provides a broad conceptual overview of the
UIMA component architecture; includes
references to the other documents in the
documentation set that provide more detail.

UIMA FAQs Frequently Asked Questions about general UIMA
concepts. (Not a programming resource.)

Known Issues Known issues and problems with the UIMA SDK.

Glossary UIMA terms and concepts and their basic
definitions.

1.1.2. Eclipse Tooling Installation and Setup

Provides step-by-step instructions for installing Apache UIMA in the Eclipse Interactive
Development Environment. See Chapter 3.

1.1.3. Tutorials and Developer’s Guides

Annotators and Analysis Engines

Building UIMA Collection Processing Engines

Developing Complete Applications

Flow Controller

Developing Applications using Multiple Subjects
of Analysis

Multiple CAS Views of an Artifact

CAS Multiplier

Tutorial-style guide for building UIMA
annotators and analysis engines. This chapter
introduces the developer to creating type
systems and using UIMA’s common data
structure, the CAS or Common Analysis
Structure. It demonstrates how to use built in
tools to specify and create basic UIMA analysis
components.

Tutorial-style guide for building UIMA collection
processing engines. These manage the analysis
of collections of documents from source to sink.

Tutorial-style guide on using the UIMA APIs to
create, run and manage UIMA components from
your application. Also describes APIs for saving
and restoring the contents of a CAS using an
XML format called XMI™.

When multiple components are combined in an
Aggregate, each CAS flow among the various
components. UIMA provides two built-in flows,
and also allows custom flows to be
implemented.

A single CAS maybe associated with multiple
subjects of analysis (Sofas). These are useful for
representing and analyzing different formats or
translations of the same document. For multi-
modal analysis, Sofas are good for different
modal representations of the same stream (e.g.,
audio and close-captions).This chapter provides
the developer details on how to use multiple
Sofas in an application.

UIMA provides an extension to the basic model
of the CAS which supports analysis of multiple
views of the same artifact, all contained with the
CAS. This chapter describes the concepts,
terminology, and the API and XML extensions
that enable this

A component may add additional CASes into the
workflow. This may be useful to break up a large
artifact into smaller units, or to create a new
CAS that collects information from multiple
other CASes.

tug.pdf#ugr.tug.aae
tug.pdf#ugr.tug.cpe
tug.pdf#ugr.tug.application
tug.pdf#ugr.tug.fc
tug.pdf#ugr.tug.aas
tug.pdf#ugr.tug.aas
tug.pdf#ugr.tug.mvs
tug.pdf#ugr.tug.cm

XMI and EMF Interoperability

1.1.4. Tools Users' Guides

Component Descriptor Editor

Collection Processing Engine Configurator

PEAR Packager

PEAR Installer

PEAR Merger

Document Analyzer

CAS Visual Debugger

JCasGen

XML CAS Viewer

The UIMA Type system and the contents of the
CAS itself can be externalized using the XMI
standard for XML MetaData. Eclipse Modeling
Framework (EMF) tooling can be used to
develop applications that use this information.

Describes the features of the Component
Descriptor Editor Tool. This tool provides a GUI
for specifying the details of UIMA component
descriptors, including those for Analysis Engines
(primitive and aggregate), Collection Readers,
CAS Consumers and Type Systems.

Describes the User Interfaces and features of the
CPE Configurator tool. This tool allows the user
to select and configure the components of a
Collection Processing Engine and then to run the
engine.

Describes how to use the PEAR Packager utility.
This utility enables developers to produce an
archive file for an analysis engine that includes
all required resources for installing that analysis
engine in another UIMA environment.

Describes how to use the PEAR Installer utility.
This utility installs and verifies an analysis
engine from an archive file (PEAR) with all its
resources in the right place so it is ready to run.

Describes how to use the PEAR Merger utility,
which does a simple merge of multiple PEAR
packages into one.

Describes the features of a tool for applying a
UIMA analysis engine to a set of documents and
viewing the results.

Describes the features of a tool for viewing the
detailed structure and contents of a CAS. Good
for debugging.

Describes how to run the JCasGen utility, which
automatically builds Java classes that
correspond to a particular CAS Type System.

Describes how to run the supplied viewer to
view externalized XML forms of CASes. This
viewer is used in the examples.

tug.pdf#ugr.tug.xmi_emf
tools.pdf#ugr.tools.cde
tools.pdf#ugr.tools.cpe
tools.pdf#ugr.tools.pear.packager
tools.pdf#ugr.tools.pear.installer
tools.pdf#ugr.tools.pear.merger
tools.pdf#ugr.tools.doc_analyzer
tools.pdf#ugr.tools.cvd
tools.pdf#ugr.tools.jcasgen
tools.pdf#ugr.tools.annotation_viewer

1.1.5. References

Introduction to the UIMA API Javadocs

XML: Component Descriptor

XML: Collection Processing Engine Descriptor
CAS

JCas

PEAR Reference

XMI CAS Serialization Reference

1.1.6. Version 3 User’s guide

Javadocs detailing the UIMA programming
interfaces.

Provides detailed XML format for all the UIMA
component descriptors, except the CPE (see
next).

Provides detailed XML format for the Collection
Processing Engine descriptor.

Provides detailed description of the principal
CAS interface.

Provides details on the JCas, a native Java
interface to the CAS.

Provides detailed description of the deployable
archive format for UIMA components.

Provides detailed description of the deployable
archive format for UIMA components.

This book describes Version 3’s features, capabilities, and differences with version 2.

1.2. How to use the Documentation

1. Explore this chapter to get an overview of the different documents that are included with

Apache UIMA.

2. Read Chapter 2, UIMA Conceptual Overview to get a broad view of the basic UIMA concepts and
philosophy with reference to the other documents included in the documentation set which

provide greater detail.

3. For more general information on the UIMA architecture and how it has been used, refer to the
IBM Systems Journal special issue on Unstructured Information Management, on-line at
http://www.research.ibm.com/journal/sj43-3.html or to the section of the UIMA project website
on Apache website where other publications are listed.

4. Set up Apache UIMA in your Eclipse environment. To do this, follow the instructions in Chapter
3, Setting up the Eclipse IDE to work with UIMA.

5. Develop sample UIMA annotators, run them and explore the results. Read the Annotator and
Analysis Engine Developer’s Guide and follow it like a tutorial to learn how to develop your first
UIMA annotator and set up and run your first UIMA analysis engines.

o As part of this you will use a few tools including

= The UIMA Component Descriptor Editor, described in more detail in the Component

Descriptor Editor User’s Guide and

= The Document Analyzer, described in more detail in Document Analyzer User’s Guide.

ref.pdf#ugr.ref.javadocs
ref.pdf#ugr.ref.xml.component_descriptor
ref.pdf#ugr.ref.xml.cpe_descriptor
ref.pdf#ugr.ref.cas
ref.pdf#ugr.ref.jcas
ref.pdf#ugr.ref.pear
ref.pdf#ugr.ref.xmi
http://www.research.ibm.com/journal/sj43-3.html
tug.pdf#ugr.tug.aae
tug.pdf#ugr.tug.aae
tools.pdf#ugr.tools.cde
tools.pdf#ugr.tools.cde
tools.pdf#ugr.tools.doc_analyzer

o While following along in Tutorials and User’s Guides, reference documents that may help
are:

= Component Descriptor Reference for understanding the analysis engine descriptors
= JCas Reference for understanding the JCas.

6. Learn how to create, run and manage a UIMA analysis engine as part of an application. Connect
your analysis engine to the provided semantic search engine to learn how a complete analysis
and search application may be built with Apache UIMA. The Application Developer’s Guide will
guide you through this process.

o As part of this you will use the document analyzer (described in more detail in Document
Analyzer User’s Guide and semantic search GUI tools.

7. Pat yourself on the back. Congratulations! If you reached this step successfully, then you have
an appreciation for the UIMA analysis engine architecture. You would have built a few sample
annotators, deployed UIMA analysis engines to analyze a few documents, searched over the
results using the built-in semantic search engine and viewed the results through a built-in
viewer — all as part of a simple but complete application.

8. Develop and run a Collection Processing Engine (CPE) to analyze and gather the results of an
entire collection of documents. Collection Processing Engine Developer’s Guide will guide you
through this process.

o As part of this you will use the CPE Configurator tool. For details see Collection Processing
Engine Configurator User’s Guide

> You will also learn about CPE Descriptors. The detailed format for these may be found in the
Collection Processing Engine Descriptor Reference.

9. Learn how to package up an analysis engine for easy installation into another UIMA
environment. PEAR Packager User’s Guide and PEAR Installer User’s Guide will teach you how
to create UIMA analysis engine archives so that you can easily share your components with a
broader community.

1.3. Changes from UIMA Version 2

See the separate document Version 3 User’s Guide.s

1.4. Migrating existing UIMA pipelines from Version 2
to Version 3

The format of JCas classes changed when going from version 2 to version 3. If you had JCas classes
for user types, these need to be regenerated using the version 3 JCasGen tooling or Maven plugin.
Alternatively, these can be migrated without regenerating; the migration preserves any
customization users may have added to the JCas classes.

The Version 3 User’s Guide has a chapter detailing the migration, including a description of the
migration tool to aid in this process.

tug.pdf#ugr.tug.aae
ref.pdf#ugr.ref.xml.component_descriptor
ref.pdf#ugr.ref.jcas
tug.pdf#ugr.tug.application
tools.pdf#ugr.tools.doc_analyzer
tools.pdf#ugr.tools.doc_analyzer
tug.pdf#ugr.tug.cpe
tools.pdf#ugr.tools.cpe
tools.pdf#ugr.tools.cpe
ref.pdf#ugr.ref.xml.cpe_descriptor
tools.pdf#ugr.tools.pear.packager
tools.pdf#ugr.tools.pear.installer

1.5. Apache UIMA Summary

1.5.1. General

UIMA supports the development, discovery, composition and deployment of multi-modal analytics
for the analysis of unstructured information and its integration with search technologies.

Apache UIMA includes APIs and tools for creating analysis components. Examples of analysis
components include tokenizers, summarizers, categorizers, parsers, named-entity detectors etc.
Tutorial examples are provided with Apache UIMA; additional components are available from the
community.

1.5.2. Programming Language Support

UIMA supports the development and integration of analysis algorithms developed in different
programming languages.

The Apache UIMA project is both a Java framework and a matching C enablement layer, which
allows annotators to be written in C and have access to a C version of the CAS. The C enablement
layer also enables annotators to be written in Perl, Python, and TCL, and to interoperate with those
written in other languages.

1.5.3. Multi-Modal Support

The UIMA architecture supports the development, discovery, composition and deployment of multi-
modal analytics, including text, audio and video. Annotations, Artifacts, and Sofas discuss this is
more detail.

1.6. Summary of Apache UIMA Capabilities

Module Description

UIMA Framework Core A framework integrating core functions for
creating, deploying, running and managing
UIMA components, including analysis engines
and Collection Processing Engines in collocated
and/or distributed configurations.

The framework includes an implementation of
core components for transport layer adaptation,
CAS management, workflow management based
on declarative specifications, resource
management, configuration management,
logging, and other functions.

10

tug.pdf#ugr.tug.aas

C++ and other programming language
Interoperability

Framework Services and APIs

CAS

JCas

Collection Processing Management (CPM)

Resource Manager

Configuration Manager

Logger
Tools and Utilities

Utility for generating a Java object model for
CAS types from a UIMA XML type system
definition.

Includes C CAS and supports the creation of
UIMA compliant C components that can be
deployed in the UIMA run-time through a built-
in JNI adapter. This includes high-speed binary
serialization.

Includes support for creating service-based
UIMA engines. This is ideal for wrapping
existing code written in different languages.

Note that interfaces of these components are
available to the developer but different
implementations are possible in different
implementations of the UIMA framework.

These classes provide the developer with typed
access to the Common Analysis Structure (CAS),
including type system schema, elements,
subjects of analysis and indices. Multiple
subjects of analysis (Sofas) mechanism supports
the independent or simultaneous analysis of
multiple views of the same artifacts (e.g.
documents), supporting multi-lingual and multi-
modal analysis.

An alternative interface to the CAS, providing
Java-based UIMA Analysis components with
native Java object access to CAS types and their
attributes or features, using the JavaBeans
conventions of getters and setters.

Core functions for running UIMA collection
processing engines in collocated and/or
distributed configurations. The CPM provides
scalability across parallel processing pipelines,
check-pointing, performance monitoring and
recoverability.

Provides UIMA components with run-time
access to external resources handling
capabilities such as resource naming, sharing,
and caching.

Provides UIMA components with run-time
access to their configuration parameter settings.

Provides access to a common logging facility.
JCasGen

Saving and Restoring CAS contents

11

APIs in the core framework support saving and
restoring the contents of a CAS to streams in
multiple formats, including XMI, binary, and
compressed forms. These apis are collected into
the CasIOUtils class.

Tool for building a UIMA component archive to
facilitate porting, registering, installing and
testing components.

Tool for installing and verifying a UIMA
component archive in a UIMA installation.

Utility that combines multiple PEARs into one.

Eclipse Plug-in for specifying and configuring
component descriptors for UIMA analysis
engines as well as other UIMA component types
including Collection Readers and CAS
Consumers.

Graphical tool for configuring Collection
Processing Engines and applying them to
collections of documents.

Viewer for exploring annotations and related
CAS data.

GUI Java application that provides developers
with detailed visual view of the contents of a
CAS.

GUI Java application that applies analysis
engines to sets of documents and shows results
in a viewer.

Eclipse plug-in that lets you edit the contents of a
CAS

Eclipse plug-in that lets you configure Eclipse
launchers for UIMA pipelines

Database Writer

Annotators

12

PEAR Packager for Eclipse

PEAR Installer

PEAR Merger

Component Descriptor Editor

CPE Configurator

Java Annotation Viewer

CAS Visual Debugger

Document Analyzer

CAS Editor

UIMA Pipeline Eclipse Launcher

Example Analysis Components

CAS Consumer that writes the content of
selected CAS types into a relational database,
using JDBC. This code is in
cpe/PersonTitleDBWriterCasConsumer.

Set of simple annotators meant for pedagogical
purposes. Includes: Date/time, Room-number,
Regular expression, Tokenizer, and Meeting-
finder annotator. There are sample CAS
Multipliers as well.

Flow Controllers

XMI Collection Reader, CAS Consumer

File System Collection Reader

There is a sample flow-controller based on the
whiteboard concept of sending the CAS to
whatever annotator hasn’t yet processed it,
when that annotator’s inputs are available in
the CAS.

Reads and writes the CAS in the XMI format

Simple Collection Reader for pulling documents
from the file system and initializing CASes.

13

Chapter 2. UIMA Conceptual Overview

UIMA is an open, industrial-strength, scaleable and extensible platform for creating, integrating
and deploying unstructured information management solutions from powerful text or multi-modal
analysis and search components.

The Apache UIMA project is an implementation of the Java UIMA framework available under the
Apache License, providing a common foundation for industry and academia to collaborate and
accelerate the world-wide development of technologies critical for discovering vital knowledge
present in the fastest growing sources of information today:.

This chapter presents an introduction to many essential UIMA concepts. It is meant to provide a
broad overview to give the reader a quick sense of UIMA’s basic architectural philosophy and the
UIMA SDK'’s capabilities.

This chapter provides a general orientation to UIMA and makes liberal reference to the other
chapters in the UIMA SDK documentation set, where the reader may find detailed treatments of key
concepts and development practices. It may be useful to refer to Glossary: Key Terms & Concepts, to
become familiar with the terminology in this overview.

2.1. UIMA Introduction

Analytics bridge the
Unstructured & Structured worlds

Structured

Unstructured Information
Information \
R T
‘] Indices
Text, Chat,
Email, Audio, ® |dentify Semantic Entities, Induce Structure DBs
: Video qw) ® Chats, Phone Calls, Transfers . _J
E Times, Tgics, Opimos, Relatiosti s |
) , Topics, Opinions, Relationships
High-Value ® Threats, Plots, efc.
Most Current Content Explicit Structure
BUT ... Explicit Semantics
Buried in Huge Volumes Efficient Search
Lots of Noise, Implicit Semantics Focused Content

Inefficient Search
Figure 1. UIMA helps you build the bridge between the unstructured and structuredworlds
Unstructured information represents the largest, most current and fastest growing source of
information available to businesses and governments. The web is just the tip of the iceberg.

Consider the mounds of information hosted in the enterprise and around the world and across
different media including text, voice and video. The high-value content in these vast collections of

14

unstructured information is, unfortunately, buried in lots of noise. Searching for what you need or
doing sophisticated data mining over unstructured information sources presents new challenges.

An unstructured information management (UIM) application may be generally characterized as a
software system that analyzes large volumes of unstructured information (text, audio, video,
images, etc.) to discover, organize and deliver relevant knowledge to the client or application end-
user. An example is an application that processes millions of medical abstracts to discover critical
drug interactions. Another example is an application that processes tens of millions of documents
to discover key evidence indicating probable competitive threats.

First and foremost, the unstructured data must be analyzed to interpret, detect and locate concepts
of interest, for example, named entities like persons, organizations, locations, facilities, products
etc., that are not explicitly tagged or annotated in the original artifact. More challenging analytics
may detect things like opinions, complaints, threats or facts. And then there are relations, for
example, located in, finances, supports, purchases, repairs etc. The list of concepts important for
applications to discover in unstructured content is large, varied and often domain specific. Many
different component analytics may solve different parts of the overall analysis task. These
component analytics must interoperate and must be easily combined to facilitate the development
of UIM applications.

The result of analysis are used to populate structured forms so that conventional data processing
and search technologies like search engines, database engines or OLAP (On-Line Analytical
Processing, or Data Mining) engines can efficiently deliver the newly discovered content in
response to the client requests or queries.

In analyzing unstructured content, UIM applications make use of a variety of analysis technologies
including:

« Statistical and rule-based Natural Language Processing (NLP)

* Information Retrieval (IR)

* Machine learning

* Ontologies

* Automated reasoning and

Knowledge Sources (e.g., CYC, WordNet, FrameNet, etc.)

Specific analysis capabilities using these technologies are developed independently using different
techniques, interfaces and platforms.

The bridge from the unstructured world to the structured world is built through the composition
and deployment of these analysis capabilities. This integration is often a costly challenge.

The Unstructured Information Management Architecture (UIMA) is an architecture and software
framework that helps you build that bridge. It supports creating, discovering, composing and
deploying a broad range of analysis capabilities and linking them to structured information
services.

UIMA allows development teams to match the right skills with the right parts of a solution and
helps enable rapid integration across technologies and platforms using a variety of different

15

deployment options. These ranging from tightly-coupled deployments for high-performance, single-
machine, embedded solutions to parallel and fully distributed deployments for highly flexible and
scaleable solutions.

2.2. The Architecture, the Framework and the SDK

UIMA is a software architecture which specifies component interfaces, data representations, design
patterns and development roles for creating, describing, discovering, composing and deploying
multi-modal analysis capabilities.

The UIMA framework provides a run-time environment in which developers can plug in their
UIMA component implementations and with which they can build and deploy UIM applications.
The framework is not specific to any IDE or platform. Apache hosts a Java and (soon) a C++
implementation of the UIMA Framework.

The UIMA Software Development Kit (SDK) includes the UIMA framework, plus tools and utilities
for using UIMA. Some of the tooling supports an Eclipse-based (http://www.eclipse.org/)
development environment.

2.3. Analysis Basics

Analysis Engine, Document, Annotator, Annotator Developer, Type, Type System,

NOTE .
Feature, Annotation, CAS, Sofa, JCas, UIMA Context.

2.3.1. Analysis Engines, Annotators & Results

Key

Annotations
T Image Document

Fred Center
(Entity)

. ‘f:-‘

.o
L e
"~ - -
. *
Center Micros Eereat 98 b e
(Entity) (Annotation) ‘.
i ot
R
Person: P1 Qrganization: O1 Person: P2
(Annotation) (Annotation) (Annotation)

Text Document: D102

S A S =
Fred Center is the CEO of Center Micros. He is a graduate of State University and excels at golf.

101 ... 141...

Figure 2. Objects represented in the Common Analysis Structure (CAS)

UIMA is an architecture in which basic building blocks called Analysis Engines (AEs) are composed
to analyze a document and infer and record descriptive attributes about the document as a whole,
and/or about regions therein. This descriptive information, produced by AEs is referred to generally

16

http://www.eclipse.org/

as analysis results. Analysis results typically represent meta-data about the document content. One
way to think about AEs is as software agents that automatically discover and record meta-data
about original content.

UIMA supports the analysis of different modalities including text, audio and video. The majority of
examples we provide are for text. We use the term document, therefore, to generally refer to any
unit of content that an AE may process, whether it is a text document or a segment of audio, for
example. See the Multiple CAS Views of an Artifact for more information on multimodal processing
in UIMA.

Analysis results include different statements about the content of a document. For example, the
following is an assertion about the topic of a document:

(1) The Topic of document D102 is "CEOs and Golf".

Analysis results may include statements describing regions more granular than the entire
document. We use the term span to refer to a sequence of characters in a text document. Consider
that a document with the identifier D102 contains a span, “Fred Centers” starting at character
position 101. An AE that can detect persons in text may represent the following statement as an
analysis result:

(2) The span from position 101 to 112 in document D102 denotes a Person

In both statements 1 and 2 above there is a special pre-defined term or what we call in UIMA a
Type. They are Topic and Person respectively. UIMA types characterize the kinds of results that an
AE may create — more on types later.

Other analysis results may relate two statements. For example, an AE might record in its results
that two spans are both referring to the same person:

(3) The Person denoted by span 101 to 112 and
the Person denoted by span 141 to 143 in document D102
refer to the same Entity.

The above statements are some examples of the kinds of results that AEs may record to describe the
content of the documents they analyze. These are not meant to indicate the form or syntax with
which these results are captured in UIMA — more on that later in this overview.

The UIMA framework treats Analysis engines as pluggable, composible, discoverable, managed
objects. At the heart of AEs are the analysis algorithms that do all the work to analyze documents
and record analysis results.

UIMA provides a basic component type intended to house the core analysis algorithms running
inside AEs. Instances of this component are called Annotators. The analysis algorithm developer’s
primary concern therefore is the development of annotators. The UIMA framework provides the
necessary methods for taking annotators and creating analysis engines.

17

tug.pdf#ugr.tug.mvs

In UIMA the person who codes analysis algorithms takes on the role of the Annotator Developer.
The Annotator and Analysis Engine Developer’s Guide will take the reader through the details
involved in creating UIMA annotators and analysis engines.

At the most primitive level an AE wraps an annotator adding the necessary APIs and infrastructure
for the composition and deployment of annotators within the UIMA framework. The simplest AE
contains exactly one annotator at its core. Complex AEs may contain a collection of other AEs each
potentially containing within them other AEs.

2.3.2. Representing Analysis Results in the CAS

How annotators represent and share their results is an important part of the UIMA architecture.
UIMA defines a Common Analysis Structure (CAS) precisely for these purposes.

The CAS is an object-based data structure that allows the representation of objects, properties and
values. Object types may be related to each other in a single-inheritance hierarchy. The CAS
logically (if not physically) contains the document being analyzed. Analysis developers share and
record their analysis results in terms of an object model within the CAS. ™

The UIMA framework includes an implementation and interfaces to the CAS. For a more detailed
description of the CAS and its interfaces see CAS Reference.

A CAS that logically contains statement 2 (repeated here for your convenience)
(2) The span from position 101 to 112 in document D102 denotes a Person

would include objects of the Person type. For each person found in the body of a document, the AE
would create a Person object in the CAS and link it to the span of text where the person was
mentioned in the document.

While the CAS is a general purpose data structure, UIMA defines a few basic types and affords the
developer the ability to extend these to define an arbitrarily rich Type System. You can think of a
type system as an object schema for the CAS.

A type system defines the various types of objects that may be discovered in documents by AE’s that
subscribe to that type system.

As suggested above, Person may be defined as a type. Types have properties or features. So for
example, Age and Occupation may be defined as features of the Person type.

Other types might be Organization, Company, Bank, Facility, Money, Size, Price, Phone Number,
Phone Call, Relation, Network Packet, Product, Noun, Phrase, Verb, Color, Parse Node, Feature Weight
Array etc.

There are no limits to the different types that may be defined in a type system. A type system is
domain and application specific.

Types in a UIMA type system may be organized into a taxonomy. For example, Company may be
defined as a subtype of Organization. NounPhrase may be a subtype of a ParseNode.

18

tug.pdf#ugr.tug.aae
ref.pdf#ugr.ref.cas

The Annotation Type

A general and common type used in artifact analysis and from which additional types are often
derived is the annotation type.

The annotation type is used to annotate or label regions of an artifact. Common artifacts are text
documents, but they can be other things, such as audio streams. The annotation type for text
includes two features, namely begin and end. Values of these features represent integer offsets in
the artifact and delimit a span. Any particular annotation object identifies the span it annotates
with the begin and end features.

The key idea here is that the annotation type is used to identify and label or annotate a specific
region of an artifact.

Consider that the Person type is defined as a subtype of annotation. An annotator, for example, can
create a Person annotation to record the discovery of a mention of a person between position 141
and 143 in document D102. The annotator can create another person annotation to record the
detection of a mention of a person in the span between positions 101 and 112.

Not Just Annotations

While the annotation type is a useful type for annotating regions of a document, annotations are
not the only kind of types in a CAS. A CAS is a general representation scheme and may store
arbitrary data structures to represent the analysis of documents.

As an example, consider statement 3 above (repeated here for your convenience).

(3) The Person denoted by span 101 to 112 and
the Person denoted by span 141 to 143 in document D102
refer to the same Entity.

This statement mentions two person annotations in the CAS; the first, call it P1 delimiting the span
from 101 to 112 and the other, call it P2, delimiting the span from 141 to 143. Statement 3 asserts
explicitly that these two spans refer to the same entity. This means that while there are two
expressions in the text represented by the annotations P1 and P2, each refers to one and the same
person.

The Entity type may be introduced into a type system to capture this kind of information. The Entity
type is not an annotation. It is intended to represent an object in the domain which may be referred
to by different expressions (or mentions) occurring multiple times within a document (or across
documents within a collection of documents). The Entity type has a feature named occurrences. This
feature is used to point to all the annotations believed to label mentions of the same entity.

Consider that the spans annotated by P1 and P2 were “Fred Center” and “He” respectively. The
annotator might create a new Entity object called FredCenter. To represent the relationship in
statement 3 above, the annotator may link FredCenter to both P1 and P2 by making them values of
its occurrences feature.

Figure 2 also illustrates that an entity may be linked to annotations referring to regions of image

19

documents as well. To do this the annotation type would have to be extended with the appropriate
features to point to regions of an image.

Multiple Views within a CAS

UIMA supports the simultaneous analysis of multiple views of a document. This support comes in
handy for processing multiple forms of the artifact, for example, the audio and the closed captioned
views of a single speech stream, or the tagged and detagged views of an HTML document.

AEs analyze one or more views of a document. Each view contains a specific subject of
analysis(Sofa), plus a set of indexes holding metadata indexed by that view. The CAS, overall, holds
one or more CAS Views, plus the descriptive objects that represent the analysis results for each.

Another common example of using CAS Views is for different translations of a document. Each
translation may be represented with a different CAS View. Each translation may be described by a
different set of analysis results. For more details on CAS Views and Sofas, see Multiple CAS Views of
an Artifact and Annotations, Artifacts, and Sofas.

2.3.3. Using CASes and External Resources

The two main interfaces that a UIMA component developer interacts with are the CAS and the
UIMA Context.

UIMA provides an efficient implementation of the CAS with multiple programming interfaces.
Through these interfaces, the annotator developer interacts with the document and reads and
writes analysis results. The CAS interfaces provide a suite of access methods that allow the
developer to obtain indexed iterators to the different objects in the CAS. See CAS Reference. While
many objects may exist in a CAS, the annotator developer can obtain a specialized iterator to all
Person objects associated with a particular view, for example.

For Java annotator developers, UIMA provides the JCas. This interface provides the Java developer
with a natural interface to CAS objects. Each type declared in the type system appears as a Java
Class; the UIMA framework renders the Person type as a Person class in Java. As the analysis
algorithm detects mentions of persons in the documents, it can create Person objects in the CAS. For
more details on how to interact with the CAS using this interface, refer to the JCas Reference.

The component developer, in addition to interacting with the CAS, can access external resources
through the framework’s resource manager interface called the UIMA Context. This interface,
among other things, can ensure that different annotators working together in an aggregate flow
may share the same instance of an external file or remote resource accessed via its URL, for
example. For details on using the UIMA Context see Annotator and Analysis Engine Developer’s
Guide.

2.3.4. Component Descriptors

UIMA defines interfaces for a small set of core components that users of the framework provide
implmentations for. Annotators and Analysis Engines are two of the basic building blocks specified
by the architecture. Developers implement them to build and compose analysis capabilities and
ultimately applications.

20

tug.pdf#ugr.tug.mvs
tug.pdf#ugr.tug.mvs
tug.pdf#ugr.tug.aas
ref.pdf#ugr.ref.cas
ref.pdf#ugr.ref.jcas
tug.pdf#ugr.tug.aae
tug.pdf#ugr.tug.aae

There are others components in addition to these, which we will learn about later, but for every
component specified in UIMA there are two parts required for its implementation:

1. the declarative part and

2. the code part.

The declarative part contains metadata describing the component, its identity, structure and
behavior and is called the Component Descriptor. Component descriptors are represented in XML.
The code part implements the algorithm. The code part may be a program in Java.

As a developer using the UIMA SDK, to implement a UIMA component it is always the case that you
will provide two things: the code part and the Component Descriptor. Note that when you are
composing an engine, the code may be already provided in reusable subcomponents. In these cases
you may not be developing new code but rather composing an aggregate engine by pointing to
other components where the code has been included.

Component descriptors are represented in XML and aid in component discovery, reuse,
composition and development tooling. The UIMA SDK provides tools for easily creating and
maintaining the component descriptors that relieve the developer from editing XML directly. This
tool is described briefly in Annotator and Analysis Engine Developer’s Guide, and more thoroughly
in Component Descriptor Editor User’s Guide.

Component descriptors contain standard metadata including the component’s name, author,
version, and a reference to the class that implements the component.

In addition to these standard fields, a component descriptor identifies the type system the
component uses and the types it requires in an input CAS and the types it plans to produce in an
output CAS.

For example, an AE that detects person types may require as input a CAS that includes a
tokenization and deep parse of the document. The descriptor refers to a type system to make the
component’s input requirements and output types explicit. In effect, the descriptor includes a
declarative description of the component’s behavior and can be used to aid in component discovery
and composition based on desired results. UIMA analysis engines provide an interface for accessing
the component metadata represented in their descriptors. For more details on the structure of
UIMA component descriptors refer to Component Descriptor Reference.

2.4. Aggregate Analysis Engines

Aggregate Analysis Engine, Delegate Analysis Engine, Tightly and Loosely Coupled,

NOTE e . .
Flow Specification, Analysis Engine Assembler

21

tug.pdf#ugr.tug.aae
tools.pdf#ugr.tools.cde
ref.pdf#ugr.ref.xml.component_descriptor

Aggregate Analysis Engine: MyNamedEnitityDetector CAS Annotations

-Tokens
Language Tokenizer Part of Speech| | Shallow Parser| | Named Entity -Parts of Speech
Identifier N .| Annotator N | Annotator > -Names

-Organizations

Figure 3. Sample Aggregate Analysis Engine

A simple or primitive UIMA Analysis Engine (AE) contains a single annotator. AEs, however, may be
defined to contain other AEs organized in a workflow. These more complex analysis engines are
called Aggregate Analysis Engines.

Annotators tend to perform fairly granular functions, for example language detection, tokenization
or part of speech detection. These functions typically address just part of an overall analysis task. A
workflow of component engines may be orchestrated to perform more complex tasks.

An AE that performs named entity detection, for example, may include a pipeline of annotators
starting with language detection feeding tokenization, then part-of-speech detection, then deep
grammatical parsing and then finally named-entity detection. Each step in the pipeline is required
by the subsequent analysis. For example, the final named-entity annotator can only do its analysis
if the previous deep grammatical parse was recorded in the CAS.

Aggregate AEs are built to encapsulate potentially complex internal structure and insulate it from
users of the AE. In our example, the aggregate analysis engine developer acquires the internal
components, defines the necessary flow between them and publishes the resulting AE. Consider the
simple example illustrated in Figure 3 where “MyNamed-EntityDetector” is composed of a linear
flow of more primitive analysis engines.

Users of this AE need not know how it is constructed internally but only need its name and its
published input requirements and output types. These must be declared in the aggregate AE’s
descriptor. Aggregate AE’s descriptors declare the components they contain and a flow
specification. The flow specification defines the order in which the internal component AEs should
be run. The internal AEs specified in an aggregate are also called the delegate analysis engines.
The term "delegate" is used because aggregate AE’s are thought to "delegate" functions to their
internal AEs.

The developer can implement a "Flow Controller" and include it as part of an aggregate AE by
referring to it in the aggregate AE’s descriptor. The flow controller is responsible for computing the
"flow", that is, for determining the order in which of delegate AE’s that will process the CAS. The
Flow Contoller has access to the CAS and any external resources it may require for determining the
flow. It can do this dynamically at run-time, it can make multi-step decisions and it can consider
any sort of flow specification included in the aggregate AE’s descriptor. See Flow Controller
Developer’s Guide for details on the UIMA Flow Controller interface.

We refer to the development role associated with building an aggregate from delegate AEs as the
Analysis Engine Assembler .

The UIMA framework, given an aggregate analysis engine descriptor, will run all delegate AEs,
ensuring that each one gets access to the CAS in the sequence produced by the flow controller. The

22

tug.pdf#ugr.tug.fc
tug.pdf#ugr.tug.fc

UIMA framework is equipped to handle different deployments where the delegate engines, for
example, are tightly-coupled (running in the same process) or loosely-coupled (running in
separate processes or even on different machines). The framework supports a number of remote
protocols for loose coupling deployments of aggregate analysis engines.

The UIMA framework facilitates the deployment of AEs as remote services by using an adapter
layer that automatically creates the necessary infrastructure in response to a declaration in the
component’s descriptor. For more details on creating aggregate analysis engines refer to
Component Descriptor Reference. The component descriptor editor tool assists in the specification
of aggregate AEs from a repository of available engines. For more details on this tool refer to
Component Descriptor Editor User’s Guide.

The UIMA framework implementation has two built-in flow implementations: one that support a
linear flow between components, and one with conditional branching based on the language of the
document. It also supports user-provided flow controllers, as described in Flow Controller
Developer’s Guide. Furthermore, the application developer is free to create multiple AEs and
provide their own logic to combine the AEs in arbitrarily complex flows. For more details on this
the reader may refer to Using Analysis Engines.

2.5. Application Building and Collection Processing

Process Method, Collection Processing Architecture, Collection Reader, CAS
NOTE Consumer, CAS Initializer, Collection Processing Engine, Collection Processing
Manager.

2.5.1. Using the framework from an Application

Using UIMA Framework to create and interact with an Analysis Engine

image::images/overview-and-setup/conceptual_overview_files/image008.png["Picture of application
interacting with UIMA’s factory to produce an analysis engine, which acts as a container for
annotators, and interfaces with the application via the process and getMetaData methods among
others."]

As mentioned above, the basic AE interface may be thought of as simply CAS in/CAS out.

The application is responsible for interacting with the UIMA framework to instantiate an AE, create
or acquire an input CAS, initialize the input CAS with a document and then pass it to the AE through
the process method. This interaction with the framework is illustrated in Using UIMA Framework
to create and interact with an Analysis Engine.

The UIMA AE Factory takes the declarative information from the Component Descriptor and the
class files implementing the annotator, and instantiates the AE instance, setting up the CAS and the
UIMA Context.

The AE, possibly calling many delegate AEs internally, performs the overall analysis and its process
method returns the CAS containing new analysis results.

The application then decides what to do with the returned CAS. There are many possibilities. For

23

ref.pdf#ugr.ref.xml.component_descriptor
tools.pdf#ugr.tools.cde
tug.pdf#ugr.tug.fc
tug.pdf#ugr.tug.fc
tug.pdf#ugr.tug.application.using_aes

instance the application could: display the results, store the CAS to disk for post processing, extract
and index analysis results as part of a search or database application etc.

The UIMA framework provides methods to support the application developer in creating and
managing CASes and instantiating, running and managing AEs. Details may be found in Application
Developer’s Guide.

2.5.2. Graduating to Collection Processing

Collection Processing Engine

Aggregate Analysis Engine

Ontologies

CAS Consumer
CAS Consumer
CAS Consumer

Analysis Engine

Collection Annotator

D

Ll

Analysis Engine

w o Y Annotator

Figure 4. High-Level UIMA Component Architecture from Source to Sink

Many UIM applications analyze entire collections of documents. They connect to different
document sources and do different things with the results. But in the typical case, the application
must generally follow these logical steps:

Connect to a physical source

Acquire a document from the source

Initialize a CAS with the document to be analyzed

Send the CAS to a selected analysis engine

Process the resulting CAS

Go back to 2 until the collection is processed

N o ok W e

Do any final processing required after all the documents in the collection have been analyzed

UIMA supports UIM application development for this general type of processing through its
Collection Processing Architecture.

As part of the collection processing architecture UIMA introduces two primary components in
addition to the annotator and analysis engine. These are the Collection Reader and the CAS
Consumer. The complete flow from source, through document analysis, and to CAS Consumers
supported by UIMA is illustrated in Figure 5.

The Collection Reader’s job is to connect to and iterate through a source collection, acquiring
documents and initializing CASes for analysis.

24

tug.pdf#ugr.tug.application
tug.pdf#ugr.tug.application

CAS Consumers, as the name suggests, function at the end of the flow. Their job is to do the final
CAS processing. A CAS Consumer may be implemented, for example, to index CAS contents in a
search engine, extract elements of interest and populate a relational database or serialize and store
analysis results to disk for subsequent and further analysis.

A UIMA Collection Processing Engine (CPE) is an aggregate component that specifies a “source to
sink” flow from a Collection Reader though a set of analysis engines and then to a set of CAS
Consumers.

CPEs are specified by XML files called CPE Descriptors. These are declarative specifications that
point to their contained components (Collection Readers, analysis engines and CAS Consumers) and
indicate a flow among them. The flow specification allows for filtering capabilities to, for example,
skip over AEs based on CAS contents. Details about the format of CPE Descriptors may be found in
Collection Processing Engine Descriptor Reference.

Legend ‘ Source \

UIMA Framework | UJIMA Collection Processing Engine

CAS
Consumers

Collection

c Analysis
P — Reader
E

Engines

o or

E Collection Processing Manager
A » Distributed Workflow Management

c » CAS Management, Batching

- Statistics Collection
Figure 5. Collection Processing Manager in UIMA Framework

The UIMA framework includes a Collection Processing Manager (CPM). The CPM is capable of
reading a CPE descriptor, and deploying and running the specified CPE. Figure 5 illustrates the role
of the CPM in the UIMA Framework.

Key features of the CPM are failure recovery, CAS management and scale-out.

Collections may be large and take considerable time to analyze. A configurable behavior of the CPM
is to log faults on single document failures while continuing to process the collection. This behavior
is commonly used because analysis components often tend to be the weakest link — in practice they
may choke on strangely formatted content.

This deployment option requires that the CPM run in a separate process or a machine distinct from
the CPE components. A CPE may be configured to run with a variety of deployment options that
control the features provided by the CPM. For details see Collection Processing Engine Descriptor

25

ref.pdf#ugr.ref.xml.cpe_descriptor
ref.pdf#ugr.ref.xml.cpe_descriptor

Reference.

The UIMA SDK also provides a tool called the CPE Configurator. This tool provides the developer
with a user interface that simplifies the process of connecting up all the components in a CPE and
running the result. For details on using the CPE Configurator see Collection Processing Engine
Configurator User’s Guide. This tool currently does not provide access to the full set of CPE
deployment options supported by the CPM; however, you can configure other parts of the CPE
descriptor by editing it directly. For details on how to create and run CPEs refer to Collection
Processing Engine Developer’s Guide.

2.6. Exploiting Analysis Results

NOTE Semantic Search, XML Fragment Queries.

2.6.1. Semantic Search

In a simple UIMA Collection Processing Engine (CPE), a Collection Reader reads documents from the
file system and initializes CASs with their content. These are then fed to an AE that annotates
tokens and sentences, the CASs, now enriched with token and sentence information, are passed to a
CAS Consumer that populates a search engine index.

The search engine query processor can then use the token index to provide basic key-word search.
For example, given a query “center” the search engine would return all the documents that
contained the word “center”.

Semantic Search is a search paradigm that can exploit the additional metadata generated by
analytics like a UIMA CPE.

Consider that we plugged a named-entity recognizer into the CPE described above. Assume this
analysis engine is capable of detecting in documents and annotating in the CAS mentions of persons
and organizations.

Complementing the name-entity recognizer we add a CAS Consumer that extracts in addition to
token and sentence annotations, the person and organizations added to the CASs by the name-
entity detector. It then feeds these into the semantic search engine’s index.

A semantic search engine can exploit this addition information from the CAS to support more
powerful queries. For example, imagine a user is looking for documents that mention an
organization with “center” it is name but is not sure of the full or precise name of the organization.
A key-word search on “center” would likely produce way too many documents because “center” is a
common and ambiguous term. A semantic search engine might support a query language called
XML Fragments. This query language is designed to exploit the CAS annotations entered in its
index. The XML Fragment query, for example,

<organization> center </organization>

will produce first only documents that contain “center” where it appears as part of a mention

26

ref.pdf#ugr.ref.xml.cpe_descriptor
tools.pdf#ugr.tools.cpe
tools.pdf#ugr.tools.cpe
tug.pdf#ugr.tools.cpe
tug.pdf#ugr.tools.cpe

annotated as an organization by the name-entity recognizer. This will likely be a much shorter list
of documents more precisely matching the user’s interest.

Consider taking this one step further. We add a relationship recognizer that annotates mentions of
the CEO-of relationship. We configure the CAS Consumer so that it sends these new relationship
annotations to the semantic search index as well. With these additional analysis results in the index
we can submit queries like

<ceo_of>
<person> center </person>
<organization> center </organization>
<ceo_of>

This query will precisely target documents that contain a mention of an organization with “center”
as part of its name where that organization is mentioned as part of a CEO-of relationship annotated
by the relationship recognizer.

For more details about using UIMA and Semantic Search see the section on integrating text analysis
and search in Application Developer’s Guide.

2.6.2. Databases

Search engine indices are not the only place to deposit analysis results for use by applications.
Another classic example is populating databases. While many approaches are possible with varying
degrees of flexibly and performance all are highly dependent on application specifics. We included
a simple sample CAS Consumer that provides the basics for getting your analysis result into a
relational database. It extracts annotations from a CAS and writes them to a relational database,
using the open source Apache Derby database.

2.7. Multimodal Processing in UIMA

In previous sections we’ve seen how the CAS is initialized with an initial artifact that will be
subsequently analyzed by Analysis engines and CAS Consumers. The first Analysis engine may
make some assertions about the artifact, for example, in the form of annotations. Subsequent
Analysis engines will make further assertions about both the artifact and previous analysis results,
and finally one or more CAS Consumers will extract information from these CASs for structured
information storage.

27

tug.pdf#ugr.tug.application

Text Sofa

lattice
K’
Audio Sofa

. AwioSofa |

Segment Transcribe
Audio . Audio . Search
' into Text Index

Figure 6. Multiple Sofas in support of multi-modal analysis of an audio Stream. Someengines work on the
audio “view”, some on the text “view” and some on both.

Consider a processing pipeline, illustrated in Figure 6, that starts with an audio recording of a
conversation, transcribes the audio into text, and then extracts information from the text
transcript. Analysis Engines at the start of the pipeline are analyzing an audio subject of analysis,
and later analysis engines are analyzing a text subject of analysis. The CAS Consumer will likely
want to build a search index from concepts found in the text to the original audio segment covered
by the concept.

What becomes clear from this relatively simple scenario is that the CAS must be capable of
simultaneously holding multiple subjects of analysis. Some analysis engine will analyze only one
subject of analysis, some will analyze one and create another, and some will need to access
multiple subjects of analysis at the same time.

The support in UIMA for multiple subjects of analysis is called Sofa support; Sofa is an acronym
which is derived from Subject of Analysis, which is a physical representation of an artifact (e.g., the
detagged text of a web-page, the HTML text of the same web-page, the audio segment of a video, the
close-caption text of the same audio segment). A Sofa may be associated with CAS Views. A
particular CAS will have one or more views, each view corresponding to a particular subject of
analysis, together with a set of the defined indexes that index the metadata (that is, Feature
Structures) created in that view.

Analysis results can be indexed in, or “belong” to, a specific view. UIMA components may be
written in “Multi-View” mode - able to create and access multiple Sofas at the same time, or in
“Single-View” mode, simply receiving a particular view of the CAS corresponding to a particular
single Sofa. For single-view mode components, it is up to the person assembling the component to
supply the needed information to insure a particular view is passed to the component at run time.
This is done using XML descriptors for Sofa mapping (see Sofa Name Mapping).

Multi-View capability brings benefits to text-only processing as well. An input document can be
transformed from one format to another. Examples of this include transforming text from HTML to
plain text or from one natural language to another.

28

tug.pdf#ugr.tug.mvs.sofa_name_mapping

2.8. Next Steps

This chapter presented a high-level overview of UIMA concepts. Along the way, it pointed to other
documents in the UIMA SDK documentation set where the reader can find details on how to apply
the related concepts in building applications with the UIMA SDK.

At this point the reader may return to the documentation guide to learn how they might proceed in
getting started using UIMA.

For a more detailed overview of the UIMA architecture, framework and development roles we refer
the reader to the following paper:

* D. Ferrucci and A. Lally, "Building an example application using the Unstructured Information
Management Architecture", IBM Systems Journal 43, No. 3, 455-475 (2004).

This paper can be found on line at http://www.research.ibm.com/journal/sj43-3.html

[1] We have plans to extend the representational capabilities of the CAS and align its semantics with the semantics of the OMG’s
Essential Meta-Object Facility (EMOF) and with the semantics of the Eclipse Modeling Framework’s () Ecore semantics and XMI-
based representation.

29

http://www.research.ibm.com/journal/sj43-3.html

Chapter 3. Setting up the Eclipse IDE to work
with UIMA

This chapter describes how to set up the UIMA SDK to work with Eclipse. Eclipse (&url_eclipse;link:)
is a popular open-source Integrated Development Environment for many things, including Java.
The UIMA SDK does not require that you use Eclipse. However, we recommend that you do use
Eclipse because some useful UIMA SDK tools run as plug-ins to the Eclipse platform and because the
UIMA SDK examples are provided in a form that’s easy to import into your Eclipse environment.

If you are not planning on using the UIMA SDK with Eclipse, you may skip this chapter and read
Annotator and Analysis Engine Developer’s Guidenext.

This chapter provides instructions for

* installing Eclipse,
* installing the UIMA SDK’s Eclipse plugins into your Eclipse environment, and

* importing the example UIMA code into an Eclipse project.

The UIMA Eclipse plugins are designed to be used with Eclipse version 4.25 (2022-09) or later.

You will need to run Eclipse using a Java 17 or later, in order to use the UIMA

NOTE . .
Eclipse plugins.

3.1. Installation

3.1.1. Install Eclipse

* Go to https://www.eclipse.org/downloads/ and follow the instructions there to download Eclipse.

* We recommend using the latest release level. Navigate to the Eclipse Release version you want
and download the archive for your platform.

* Unzip the archive to install Eclipse somewhere, e.g., c:\

* Eclipse has a bit of a learning curve. If you plan to make significant use of Eclipse, check out the
tutorial under the help menu. It is well worth the effort. There are also books you can get that
describe Eclipse and its use.

The first time Eclipse starts up it will take a bit longer as it completes its installation. A “welcome”
page will come up. After you are through reading the welcome information, click on the arrow to
exit the welcome page and get to the main Eclipse screens.

3.1.2. Installing the UIMA Eclipse Plugins

The best way to do this is to use the Eclipse Install New Software mechanism, because that will
insure that all needed prerequisites are also installed. See below for an alternative, manual
approach.

30

tug.pdf#ugr.tug.aae
https://www.eclipse.org/downloads/

If your computer is on an internet connection which uses a proxy server, you can
configure Eclipse to know about that. Put your proxy settings into Eclipse using the

NOTE Eclipse preferences by accessing the menus: Window - Preferences... -
Install/Update, and Enable HTTP proxy connection under the Proxy Settings with
the information about your proxy.

To use the Eclipse Install New Software mechanism, start Eclipse, and then pick the menu Help -
Install new software::-. In the next page, enter the following URL in the "Work with" box and press
enter:

*https://www.apache.org/dist/uima/eclipse-update-site/

+*https://www.apache.org/dist/uima/eclipse-update-site-v3/

Choose the 2nd if you are working with core UIMA Java SDK at version 3 or later. .

Now select the plugin tools you wish to install, and click Next, and follow the remaining panels to
install the UIMA plugins.

3.1.3. Install the UIMA SDK

If you haven’t already done so, please download and install the UIMA SDK from
&url_apache_uima_download;link:. Be sure to set the environmental variable UIMA_HOME
pointing to the root of the installed UIMA SDK and run the adjustExamplePaths.bat or
adjustExamplePaths.sh script, as explained in the README.

The environmental parameter UIMA_HOME is used by the command-line scripts in the
%UIMA_HOME%/bin directory as well as by eclipse run configurations in the uimaj-examples
sample project.

3.1.4. Installing the UIMA Eclipse Plugins, manually

If you installed the UIMA plugins using the update mechanism above, please skip this section.

If you are unable to use the Eclipse Update mechanism to install the UIMA plugins, you can do this
manually. In the directory %UIMA_HOME%/eclipsePlugins (The environment variable
%UIMA_HOME% is where you installed the UIMA SDK), you will see a set of folders. Copy these to
your %ECLIPSE_HOME%/dropins directory (%ECLIPSE_HOME% is where you installed Eclipse).

3.1.5. Start Eclipse

If you have Eclipse running, restart it (shut it down, and start it again) using the -clean option; you
can do this by running the command eclipse -clean (see explanation in the next section) in the
directory where you installed Eclipse. You may want to set up a desktop shortcut at this point for
Eclipse.

31

https://www.apache.org/dist/uima/eclipse-update-site/
https://www.apache.org/dist/uima/eclipse-update-site-v3/

Special startup parameter for Eclipse: -clean

If you have modified the plugin structure (by copying or files directly in the file system) after you
started it for the first time, please include the “-clean” parameter in the startup arguments to
Eclipse, one time (after any plugin modifications were done). This is needed because Eclipse may
not notice the changes you made, otherwise. This parameter forces Eclipse to reexamine all of its
plugins at startup and recompute any cached information about them.

3.2. Setting up Eclipse to view Example Code

Later chapters refer to example code. Here’s how to create a special project in Eclipse to hold the
examples.

* In Eclipse, if the Java perspective is not already open, switch to it by going to Window - Open
Perspective —Java.

* Set up a class path variable named UIMA_HOME, whose value is the directory where you
installed the UIMA SDK. This is done as follows:

> Go to Window — Preferences — Java — Build Path — Classpath Variables.
o Click “New”
- Enter UIMA_HOME (all capitals, exactly as written) in the “Name” field.
- Enter your installation directory (e.g. C:/Program Files/apache-uima) in the “Path” field
o Click “OK” in the “New Variable Entry” dialog
o Click “OK” in the “Preferences” dialog
o If'it asks you if you want to do a full build, click “Yes”
 Select the File - Import menu option
* Select “General/Existing Project into Workspace” and click the “Next” button.
* Click “Browse” and browse to the %UIMA_HOME%/examples directory
¢ Click “Finish.” This will create a new project called “uimaj-examples” in your Eclipse workspace.

There should be no compilation errors.

To verify that you have set up the project correctly, check that there are no error messages in the
“Problems” view.

3.3. Adding the UIMA source code to the jar files

If you are running a current version of Eclipse, and have the m2e (Maven
extensions for Eclipse) plugin installed, Eclipse should be able to automatically
download the source for the jars, so you may not need to do anything special (it
does take a few seconds, and you need an internet connection).

NOTE

Otherwise, if you would like to be able to jump to the UIMA source code in Eclipse or to step
through it with the debugger, you can add the UIMA source code directly to the jar files. This is
done via a shell script that comes with the source distribution. To add the source code to the jars,

32

you need to:

* Download and unpack the UIMA source distribution.

* Download and install the UIMA binary distribution (the UIMA_HOME environment variable
needs to be set to point to where you installed the UIMA binary distribution).

* cd to the root directory of the source distribution
* Execute the src\main\readme_src\addSourceTolars script in the root directory of the source

distribution.

This adds the source code to the jar files, and it will then be automatically available from Eclipse.
There is no further Eclipse setup required.

3.4. Attaching UIMA Javadocs

The binary distribution also includes the UIMA Javadocs. They are attached to the UIMA library Jar
files in the uima-examples project described above. You can attach the Javadocs to your own project
as well.

NOTE If you attached the source as described in the previous section, you don’t need to
attach the Javadocs because the source includes the Javadoc comments.

Attaching the Javadocs enables Javadoc help for UIMA APIs. After they are attached, if you hover

your mouse over a certain UIMA api element, the corresponding Javadoc will appear. You can then

press “F2” to make the hover "stick", or “Shift-F2” to open the default web-browser on your system

to let you browse the entire Javadoc information for that element.

If this pop-up behavior is something you don’t want, you can turn it off in the Eclipse preferences,
in the menu Window - Preferences — Java — Editors — hovers.

Eclipse also has a Javadoc "view" which you can show, using the Window - Show View - Javadoc.

See Using named Eclipse User Libraries for information on how to set up a UIMA "library" with the
Javadocs attached, which can be reused for other projects in your Eclipse workspace.

You can attach the Javadocs to each UIMA library jar you think you might be interested in. It makes
most sense for the uima-core.jar, youw’ll probably use the core APIs most of all.

Here’s a screenshot of what you should see when you hover your mouse pointer over the class
name “CAS” in the source code.

33

ref.pdf#ugr.ref.javadocs.libraries

// create a CAS
CAS cas = ae.newCAaAs():;

org.apache.uima.cas.CAS
Ohject-oriented CAS (Common Analysis System) APT.

A CR5 object provides the starting point for working with the CAS. It provides access to the type system, to indexes,
iterators and filters (constraints). It also lets you create new annotations and other data structures. You can create a CAS
object using static methods on the dass crg.epeche . uima util . CasCreztionUtils.

The C&s object is also the container that manages multiple Subjects of Analysis or Sofas. A Sofa represents some form of
an unstructured artifact that is processed in a UIMA pipeline, The Java string called the "DocumentText” used in a UIMA

Figure 7. Screenshot of mouse-over for UIMA APIs

3.5. Running external tools from Eclipse

You can run many tools without using Eclipse at all, by using the shell scripts in the UIMA SDK’s bin
directory. In addition, many tools can be run from inside Eclipse; examples are the Document
Analyzer, CPE Configurator, CAS Visual Debugger, and JCasGen. The uimaj-examples project
provides Eclipse launch configurations that make this easy to do.

To run these tools from Eclipse:
« If the Java perspective is not already open, switch to it by going to Window - Open Perspective
- Java.
* Go to Run - Run...

* In the window that appears, select “UIMA CPE GUI”, “UIMA CAS Visual Debugger”, “UIMA
JCasGen”, or “UIMA Document Analyzer” from the list of run configurations on the left. (If you
don’t see, these, please select the uimaj-examples project and do a Menu — File — Refresh).

* Press the “Run” button. The tools should start. Close the tools by clicking the “X” in the upper
right corner on the GUL

For instructions on using the Document Analyzer and CPE Configurator, in the Docuemnt Analyzer,
and Collection Processing Engine Configurator User’s Guide. For instructions on using the CAS
Visual Debugger and JCasGen, see CAS Visual Debugger and JCasGen.

34

tools.pdf#ugr.tools.doc_analyzer
tools.pdf#ugr.tools.cpe
tools.pdf#ugr.tools.cvd
tools.pdf#ugr.tools.jcasgen

Chapter 4. UIMA Frequently Asked
Questions (FAQ’s)

What is UIMA?

UIMA stands for Unstructured Information Management Architecture. It is component software
architecture for the development, discovery, composition and deployment of multi-modal
analytics for the analysis of unstructured information.

UIMA processing occurs through a series of modules called analysis engines. The result of
analysis is an assignment of semantics to the elements of unstructured data, for example, the
indication that the phrase “Washington” refers to a person’s name or that it refers to a place.

Analysis Engine’s output can be saved in conventional structures, for example, relational
databases or search engine indices, where the content of the original unstructured information
may be efficiently accessed according to its inferred semantics.

UIMA supports developers in creating, integrating, and deploying components across platforms
and among dispersed teams working to develop unstructured information management
applications.

How do you pronounce UIMA?

You -eee -muh.

What’s the difference between UIMA and the Apache UIMA?

UIMA 1is an architecture which specifies component interfaces, design patterns, data
representations and development roles.

Apache UIMA is an open source, Apache-licensed software project. It includes run-time
frameworks in Java and C++, APIs and tools for implementing, composing, packaging and
deploying UIMA components.

The UIMA run-time framework allows developers to plug-in their components and applications
and run them on different platforms and according to different deployment options that range
from tightly-coupled (running in the same process space) to loosely-coupled (distributed across
different processes or machines for greater scale, flexibility and recoverability).

The UIMA project has several significant subprojects, including UIMA-AS (for flexibly scaling out
UIMA pipelines over clusters of machines), uimaFIT (for a way of using UIMA without the xml
descriptors; also provides many convenience methods), UIMA-DUCC (for managing clusters of
machines running scaled-out UIMA "jobs" in a "fair" way), RUTA (Eclipse-based tooling and \ a
runtime framework for development of rule-based Annotators), Addons (where you can find
many extensions), and uimaFIT supplying a Java centric set of friendlier interfaces and avoiding
XML.

What is an Annotation?

An annotation is metadata that is associated with a region of a document. It often is a label,
typically represented as string of characters. The region may be the whole document.

35

An example is the label “Person” associated with the span of text “George Washington”. We say
that “Person” annotates “George Washington” in the sentence “George Washington was the first
president of the United States”. The association of the label “Person” with a particular span of
text is an annotation. Another example may have an annotation represent a topic, like
“American Presidents” and be used to label an entire document.

Annotations are not limited to regions of texts. An annotation may annotate a region of an image
or a segment of audio. The same concepts apply.

What is the CAS?

The CAS stands for Common Analysis Structure. It provides cooperating UIMA components with
a common representation and mechanism for shared access to the artifact being analyzed (e.g., a
document, audio file, video stream etc.) and the current analysis results.

What does the CAS contain?

The CAS is a data structure for which UIMA provides multiple interfaces. It contains and
provides the analysis algorithm or application developer with access to

* the subject of analysis (the artifact being analyzed, like the document),

+ the analysis results or metadata(e.g., annotations, parse trees, relations, entities etc.),

* indices to the analysis results, and

* the type system (a schema for the analysis results).

A CAS can hold multiple versions of the artifact being analyzed (for instance, a raw html
document, and a detagged version, or an English version and a corresponding German version,
or an audio sample, and the text that corresponds, etc.). For each version there is a separate
instance of the results indices.

Does the CAS only contain Annotations?

No. The CAS contains the artifact being analyzed plus the analysis results. Analysis results are
those metadata recorded by analysis engines in the CAS. The most common form of analysis
result is the addition of an annotation. But an analysis engine may write any structure that
conforms to the CAS’s type system into the CAS. These may not be annotations but may be other
things, for example links between annotations and properties of objects associated with
annotations.

The CAS may have multiple representations of the artifact being analyzed, each one represented
in the CAS as a particular Subject of Analysis. or Sofa

Is the CAS just XML?

36

No, in fact there are many possible representations of the CAS. If all of the analysis engines are
running in the same process, an efficient, in-memory data object is used. If a CAS must be sent to
an analysis engine on a remote machine, it can be done via an XML or a binary serialization of
the CAS.

The UIMA framework provides multiple serialization and de-serialization methods in various
formats, including XML. See the Javadocs for the CasIOUtils class.

What is a Type System?

Think of a type system as a schema or class model for the CAS. It defines the types of objects and
their properties (or features) that may be instantiated in a CAS. A specific CAS conforms to a
particular type system. UIMA components declare their input and output with respect to a type
system.

Type Systems include the definitions of types, their properties, range types (these can restrict the
value of properties to other types) and single-inheritance hierarchy of types.

What is a Sofa?

Sofa stands for Subject of Analysis. A CAS is associated with a single artifact being analysed by
a collection of UIMA analysis engines. But a single artifact may have multiple independent
views, each of which may be analyzed separately by a different set of analysis engines. For
example, given a document it may have different translations, each of which are associated with
the original document but each potentially analyzed by different engines. A CAS may have
multiple Views, each containing a different Subject of Analysis corresponding to some version of
the original artifact. This feature is ideal for multi-modal analysis, where for example, one view
of a video stream may be the video frames and the other the close-captions.

What’s the difference between an Annotator and an Analysis Engine?

In the terminology of UIMA, an annotator is simply some code that analyzes documents and
outputs annotations on the content of the documents. The UIMA framework takes the annotator,
together with metadata describing such things as the input requirements and outputs types of
the annotator, and produces an analysis engine.

Analysis Engines contain the framework-provided infrastructure that allows them to be easily
combined with other analysis engines in different flows and according to different deployment
options (collocated or as web services, for example).

Analysis Engines are the framework-generated objects that an Application interacts with. An
Annotator is a user-written class that implements the one of the supported Annotator interfaces.

Are UIMA analysis engines web services?

They can be deployed as such. Deploying an analysis engine as a web service is one of the
deployment options supported by the UIMA framework.

Do Analysis Engines have to be "stateless"?

This is a user-specifyable option. The XML metadata for the component includes an
operationalProperties element which can specify if multiple deployment is allowed. If true, then
a particular instance of an Engine might not see all the CASes being processed. If false, then that
component will see all of the CASes being processed. In this case, it can accumulate state
information among all the CASes. Typically, Analysis Engines in the main analysis pipeline are
marked multipleDeploymentAllowed = true. The CAS Consumer component, on the other hand,
defaults to having this property set to false, and is typically associated with some resource like a
database or search engine that aggregates analysis results across an entire collection.

Analysis Engines developers are encouraged not to maintain state between documents that
would prevent their engine from working as advertised if operated in a parallelized
environment.

37

Is engine meta-data compatible with web services and UDDI?

All UIMA component implementations are associated with Component Descriptors which
represents metadata describing various properties about the component to support discovery,
reuse, validation, automatic composition and development tooling. In principle, UIMA
component descriptors are compatible with web services and UDDI. However, the UIMA
framework currently uses its own XML representation for component metadata. It would not be
difficult to convert between UIMA’s XML representation and other standard representations.

How do you scale a UIMA application?

The UIMA framework allows components such as analysis engines and CAS Consumers to be
easily deployed as services or in other containers and managed by systems middleware designed
to scale. UIMA applications tend to naturally scale-out across documents allowing many
documents to be analyzed in parallel.

The UIMA-AS project has extensive capabilities to flexibly scale a UIMA pipeline across multiple
machines. The UIMA-DUCC project supports a unified management of large clusters of machines
running multiple "jobs" each consisting of a pipeline with data sources and sinks.

Within the core UIMA framework, there is a component called the CPM (Collection Processing
Manager) which has features and configuration settings for scaling an application to increase its
throughput and recoverability; the CPM was the earlier version of scaleout technology, and has
been superceded by the UIMA-AS effort (although it is still supported).

What does it mean to embed UIMA in systems middleware?

An example of an embedding would be the deployment of a UIMA analysis engine as an
Enterprise Java Bean inside an application server such as IBM WebSphere. Such an embedding
allows the deployer to take advantage of the features and tools provided by WebSphere for
achieving scalability, service management, recoverability etc. UIMA is independent of any
particular systems middleware, so analysis engines could be deployed on other application
servers as well.

How is the CPM different from a CPE?

38

These name complimentary aspects of collection processing. The CPM (Collection Processing
Manager is the part of the UIMA framework that manages the execution of a workflow of UIMA
components orchestrated to analyze a large collection of documents. The UIMA developer does
not implement or describe a CPM. It is a piece of infrastructure code that handles CAS transport,
instance management, batching, check-pointing, statistics collection and failure recovery in the
execution of a collection processing workflow.

A Collection Processing Engine (CPE) is component created by the framework from a specific CPE
descriptor. A CPE descriptor refers to a series of UIMA components including a Collection
Reader, CAS Initializer, Analysis Engine(s) and CAS Consumers. These components are organized
in a work flow and define a collection analysis job or CPE. A CPE acquires documents from a
source collection, initializes CASs with document content, performs document analysis and then
produces collection level results (e.g., search engine index, database etc). The CPM is the
execution engine for a CPE.

Does UIMA support modalities other than text?

The UIMA architecture supports the development, discovery, composition and deployment of
multi-modal analytics including text, audio and video. Applications that process text, speech and
video have been developed using UIMA. This release of the SDK, however, does not include
examples of these multi-modal applications.

It does however include documentation and programming examples for using the key feature
required for building multi-modal applications. UIMA supports multiple subjects of analysis or
Sofas. These allow multiple views of a single artifact to be associated with a CAS. For example, if
an artifact is a video stream, one Sofa could be associated with the video frames and another
with the closed-captions text. UIMA’s multiple Sofa feature is included and described in this
release of the SDK.

How does UIMA compare to other similar work?

A number of different frameworks for NLP have preceded UIMA. Two of them were developed
at IBM Research and represent UIMA’s early roots. For details please refer to the UIMA article
that appears in the IBM Systems Journal Vol. 43, No. 3 (http://www.research.ibm.com/journal/sj/
433/ferrucci.html).

UIMA has advanced that state of the art along a number of dimensions including: support for
distributed deployments in different middleware environments, easy framework embedding in
different software product platforms (key for commercial applications), broader architectural
converge with its collection processing architecture, support for multiple-modalities, support for
efficient integration across programming languages, support for a modern software engineering
discipline calling out different roles in the use of UIMA to develop applications, the extensive use
of descriptive component metadata to support development tooling, component discovery and
composition. (Please note that not all of these features are available in this release of the SDK.)

Is UIMA Open Source?

Yes. As of version 2, UIMA development has moved to Apache and is being developed within the
Apache open source processes. It is licensed under the Apache version 2 license.

What Java level and OS are required for the UIMA SDK?

As of release 3.5.0, the UIMA SDK requires Java 17. It has been tested on mainly on Windows,
Linux and macOS platforms. Other platforms and JDK implementations will likely work, but
have not been as significantly tested.

Can I build my UIM application on top of UIMA?

Yes. Apache UIMA is licensed under the Apache version 2 license, enabling you to build and
distribute applications which include the framework.

39

http://www.research.ibm.com/journal/sj/433/ferrucci.html
http://www.research.ibm.com/journal/sj/433/ferrucci.html

Chapter 5. Known Issues

JCasGen merge facility only supports Java levels 1.4 or earlier

JCasGen has a facility to merge in user (hand-coded) changes with the code generated by
JCasGen. This merging supports Java 1.4 constructs only. JCasGen generates Java 1.4 compliant
code, so as long as any code you change here also only uses Java 1.4 constructs, the merge will
work, even if you're using Java 5 or later. If you use syntactic structures particular to Java 5 or
later, the merge operation will likely fail to merge properly.

Descriptor editor in Eclipse tooling does not work with libgcj 4.1.2

40

The descriptor editor in the Eclipse tooling does not work with libgcj 4.1.2, and possibly other
versions of libgcj. This is apparently due to a bug in the implementation of their XML library,
which results in a class cast error. libgcj is used as the default JVM for Eclipse in Ubuntu (and
other Linux distributions?). The workaround is to use a different JVM to start Eclipse.

Glossary: Key Terms & Concepts

Aggregate Analysis Engine

An Analysis Engine made up of multiple subcomponents arranged in a flow. The flow can be one
of the two built-in flows, or a custom flow provided by the user.

Analysis Engine
A program that analyzes artifacts (e.g. documents) and infers information about them, and

which implements the UIMA interface Specification. It does not matter how the program is built,
with what framework or whether or not it contains (sub)components.

Annotation

The association of a metadata, such as a label, with a region of text (or other type of artifact). For
example, the label Person associated with a region of text John Doe constitutes an annotation.
We say Person annotates the span of text from X to Y containing exactly John Doe. An annotation
is represented as a special type in a UIMA type system. It is the type used to record the labeling
of regions of a Sofa. Annotations are Feature Structures whose Type is Annotation or a subtype
of that.

Annotator

A software component that implements the UIMA annotator interface. Annotators are
implemented to produce and record annotations over regions of an artifact (e.g., text document,
audio, and video).

Application

An application is the outer containing code that invokes the UIMA framework functions to
instantiate an Analysis Engine or a Collection Processing Engine from a particular descriptor,
and run it.

Apache UIMA Java Framework

A Java-based implementation of the UIMA architecture. It provides a run-time environment in
which developers can plug in and run their UIMA component implementations and with which
they can build and deploy UIM applications. The framework is the core part of the Apache UIMA
SDK.

Apache UIMA Software Development Kit (SDK)

The SDK for which you are now reading the documentation. The SDK includes the framework
plus additional components such as tooling and examples. Some of the tooling is Eclipse-based.

CAS

The UIMA Common Analysis Structure is the primary data structure which UIMA analysis
components use to represent and share analysis results. It contains:

» The artifact. This is the object being analyzed such as a text document or audio or video
stream. The CAS projects one or more views of the artifact. Each view is referred to as a Sofa.

» A type system description — indicating the types, subtypes, and their features.

» Analysis metadata — standoff annotations describing the artifact or a region of the artifact

41

* An index repository to support efficient access to and iteration over the results of analysis.

UIMA’s primary interface to this structure is provided by a class called the Common Analysis
System. We use CAS to refer to both the structure and system. Where the common analysis
structure is used through a different interface, the particular implementation of the structure is
indicated, For example, the JCas is a native Java object representation of the contents of the
common analysis structure. A CAS can have multiple views; each view has a unique
representation of the artifact, and has its own index repository, representing results of analysis
for that representation of the artifact.

CAS Consumer

A component that receives each CAS in the collection, usually after it has been processed by an
Analysis Engine. It is responsible for taking the results from the CAS and using them for some
purpose, perhaps storing selected results into a database, for instance. The CAS Consumer may
also perform collection-level analysis, saving these results in an application-specific, aggregate
data structure.

CAS Multiplier

A component, implemented by a UIMA developer, that takes a CAS as input and produces 0 or
more new CASes as output. Common use cases for a CAS Multiplier include creating alternative
versions of an input Sofa (see CAS Initializer), and breaking a large input CAS into smaller
pieces, each of which is emitted as a separate output CAS. There are other uses, however, such as
aggregating input CASes into a single output CAS.

CAS Processor

A component of a Collection Processing Engine (CPE) that takes a CAS as input and returns a CAS
as output. There are two types of CAS Processors: Analysis Engines and CAS Consumers.

CAS View

A CAS Object which shares the base CAS and type system definition and index specifications, but
has a unique index repository and aparticular Sofa. Views are named, and applications and
annotators can dynamically create additional views whenever they are needed. Annotations are
made with respect to one view. Feature structures can have references to feature structures
indexed in other views, as needed.

CDE

The Component Descriptor Editor. This is the Eclipse tool that lets you conveniently edit the
UIMA descriptors; see Component Descriptor Editor User’s Guide.

Collection Processing Engine (CPE)

Performs Collection Processing through the combination of a Collection Reader, zero or more
Analysis Engines, and zero or more CAS Consumers. The Collection Processing Manager (CPM)
manages the execution of the engine.

Collection Processing Manager (CPM)

The part of the framework that manages the execution of collection processing, routing CASs
from the Collection Reader to zero or more Analysis Engines and then to the zero or more CAS
Consumers. The CPM provides feedback such as performance statistics and error reporting and

42

tools.pdf#ugr.tools.cde

supports other features such as parallelization and error handling.

Collection Reader

A component that reads documents from some source, for example a file system or database.
The collection reader initializes a CAS with this document. Each document is returned as a CAS
that may then be processed by an Analysis Engines. If the task of populating a CAS from the
document is complex, you may use an arbitrarily complex chain of Analysis Engines and have
the last one create and initialize a new Sofa.

Feature Structure

An instance of a Type. Feature Structures are kept in the CAS, and may (optionally) be added to
the defined indexes. Feature Structures may contain references to other Feature Structures.
Feature Structures whose type is Annotation or a subtype of that, are referred to as annotations.

Feature

A data member or attribute of a type. Each feature itself has an associated range type, the type of
the value that it can hold. In the database analogy where types are tables, features are columns.
In the world of structured data types, each feature is a field, or data member.

Flow Controller

A component which implements the interfaces needed to specify a custom flow within an
Aggregate Analysis Engine.

Hybrid Analysis Engine
An where more than one of its component s are deployed the same address space and one or
more are deployed remotely (part tightly and part loosely-coupled).

Index

Data in the CAS can only be retrieved using Indexes. Indexes are analogous to the indexes that
are specified on tables of a database. Indexes belong to Index Repositories; there is one
Repository for each view of the CAS. Indexes are specified to retrieve instances of some CAS
Type (including its subtypes), and can be optionally sorted in a user-definable way. For example,
all types derived from the UIMA built-in type uima.tcas.Annotation' contain begin and end
features, which mark the begin and end offsets in the text where this annotation occurs. There is
a built-in index of Annotation's that specifies that annotations are retrieved sequentially by
sorting first on the value of the ‘begin feature (ascending) and then by the value of the end
feature (descending). In this case, iterating over the annotations, one first obtains annotations
that come sequentially first in the text, while favoring longer annotations, in the case where two
annotations start at the same offset. Users can define their own indexes as well.

JCas

A Java object interface to the contents of the CAS. This interface uses additional generated Java
classes, where each type in the CAS is represented as a Java class with the same name, each
feature is represented with a getter and setter method, and each instance of a type is
represented as a Java object of the corresponding Java class.

Loosely-Coupled Analysis Engine

An Aggregate Analysis Engine where no two of its subcomponents run in the same address space

43

but where each is remote with respect to the others that make up the aggregate. Loosely coupled
engines are ideal for using remote services that are not locally available, or for quickly
assembling and testing functionality in cross-language, cross-platform distributed environments.
They also better enable distributed scaleable implementations where quick recoverability may
have a greater impact on overall throughput than analysis speed.

PEAR

An archive file that packages up a UIMA component with its code, descriptor files and other
resources required to install and run it in another environment. You can generate PEAR files
using utilities that come with the UIMA SDK.

Primitive Analysis Engine

An Analysis Engine that is composed of a single Annotator; one that has no subcomponent inside
of it; contrast with Aggregate Analysis Engine.

Structured Information

Items stored in structured resources such as search engine indices, databases or knowledge
bases. The canonical example of structured information is the database table. Each element of
information in the database is associated with a precisely defined schema where each table
column heading indicates its precise semantics, defining exactly how the information should be
interpreted by a computer program or end-user.

Subject of Analysis (Sofa)

A piece of data (e.g., text document, image, audio segment, or video segment), which is intended
for analysis by UIMA analysis components. It belongs to a CAS View which has the same name;
there is a one-to-one correspondence between these. There can be multiple Sofas contained
within one CAS, each one representing a different view of the original artifact for example, an
audio file could be the original artifact, and also be one Sofa, and another could be the output of
a voice-recognition component, where the Sofa would be the corresponding text document.
Sofas may be analyzed independently or simultaneously; they all co-exist within the CAS.

Tightly-Coupled Analysis Engine

An Aggregate Analysis Engine where all of its component s run in the same address space.

Type

A specification of an object in the CAS used to store the results of analysis. Types are defined
using inheritance, so some types may be defined purely for the sake of defining other types, and
are in this sense abstract types. Types usually contain Features, which are attributes, or
properties of the type. A type is roughly equivalent to a class in an object oriented programming
language, or a table in a database. Instances of types in the CAS may be indexed for retrieval.

Type System

44

A collection of related types. All components that can access the CAS, including Applications,
Analysis Engines, Collection Readers, Flow Controllers, or CAS Consumers declare the type
system that they use. Type systems are shared across Analysins Engines, allowing the outputs of
one Analysis Engine to be read as input by another. A type system is roughly analogous to a set
of related classes in object oriented programming, or a set of related tables in a database. The
type system / type / feature terminology comes from computational linguistics.

Unstructured Information

The canonical example of unstructured information is the natural language text document. The
intended meaning of a document’s content is only implicit and its precise interpretation by a
computer program requires some degree of analysis to explicate the document’s semantics.
Other examples include audio, video and images. Contrast with Structured Information.

UIMA

UIMA is an acronym that stands for Unstructured Information Management Architecture; it is a
software architecture which specifies component interfaces, design patterns and development
roles for creating, describing, discovering, composing and deploying multi-modal analysis
capabilities. The UIMA specification is being developed by a technical committee at OASIS.

UIMA Java Framework

See Apache UIMA Java Framework.

UIMA SDK
See Apache UIMA SDK.

XCAS

An XML representation of the CAS. The XCAS can be used for saving and restoring CASs to and
from streams. The UIMA SDK provides XCAS serialization and de-serialization methods for
CASes. This is an older serialization format and new UIMA code should use the standard XMI
format instead.

XML Metadata Interchange (XMI)

An OMG standard for representing object graphs in XML, which UIMA uses to serialize analysis
results from the CAS to an XML representation. The UIMA SDK provides XMI serialization and
de-serialization methods for CASes

45

	Apache UIMA™ - UIMA Overview and SDK Setup
	UIMA Overview and SDK Setup
	Chapter 1. UIMA Overview
	1.1. Apache UIMA Project Documentation Overview
	1.1.1. Overviews
	1.1.2. Eclipse Tooling Installation and Setup
	1.1.3. Tutorials and Developer’s Guides
	1.1.4. Tools Users' Guides
	1.1.5. References
	1.1.6. Version 3 User’s guide

	1.2. How to use the Documentation
	1.3. Changes from UIMA Version 2
	1.4. Migrating existing UIMA pipelines from Version 2 to Version 3
	1.5. Apache UIMA Summary
	1.5.1. General
	1.5.2. Programming Language Support
	1.5.3. Multi-Modal Support

	1.6. Summary of Apache UIMA Capabilities

	Chapter 2. UIMA Conceptual Overview
	2.1. UIMA Introduction
	2.2. The Architecture, the Framework and the SDK
	2.3. Analysis Basics
	2.3.1. Analysis Engines, Annotators & Results
	2.3.2. Representing Analysis Results in the CAS
	The Annotation Type
	Not Just Annotations
	Multiple Views within a CAS

	2.3.3. Using CASes and External Resources
	2.3.4. Component Descriptors

	2.4. Aggregate Analysis Engines
	2.5. Application Building and Collection Processing
	2.5.1. Using the framework from an Application
	2.5.2. Graduating to Collection Processing

	2.6. Exploiting Analysis Results
	2.6.1. Semantic Search
	2.6.2. Databases

	2.7. Multimodal Processing in UIMA
	2.8. Next Steps

	Chapter 3. Setting up the Eclipse IDE to work with UIMA
	3.1. Installation
	3.1.1. Install Eclipse
	3.1.2. Installing the UIMA Eclipse Plugins
	3.1.3. Install the UIMA SDK
	3.1.4. Installing the UIMA Eclipse Plugins, manually
	3.1.5. Start Eclipse
	Special startup parameter for Eclipse: -clean

	3.2. Setting up Eclipse to view Example Code
	3.3. Adding the UIMA source code to the jar files
	3.4. Attaching UIMA Javadocs
	3.5. Running external tools from Eclipse

	Chapter 4. UIMA Frequently Asked Questions (FAQ’s)
	Chapter 5. Known Issues
	Glossary: Key Terms & Concepts

