
Paxson
Spring 2011

CS 161
Computer Security Homework 1

Due: Wednesday, February 9, at 9:59pm

Instructions. Submit your solution by Wednesday, February 9, at 9:59pm, in the drop
box labelled CS161 in 283 Soda Hall. Print your name, your class account name (e.g.,
cs161-xy), your TA’s name, the discussion section time where you want to pick up your
graded homework, and “HW1” prominently on the first page. Staple all pages together.
Your solutions must be legible and the solution to each problem must be labelled clearly.
You must work on your own on this homework.

Problem 1 Memory safety (20 points)
Alice has decided to write her diary in digital form. To make sure that the secrets of her
life stay safe, she wants to encrypt the diary. She downloads from the web a command-
line utility called encryptor for encrypting text. encryptor takes two arguments: a
key and a filename to store the encrypted text. It reads the text to encrypt from the
standard input and writes its encryption using key to the given file.

Alice decides it would be a good idea to store each day’s diary in a separate file with a
separate key. In the case of compromise of one key, her diary for other days will remain
secure. In order to simplify the task, she has written the following code:

struct date

{

int day;

char* month;

int year;

};

void write_diary(char* text, struct date today)

{

FILE* diary;

char buf[200];

int key = today.day + today.year * 365;

sprintf(buf, "encryptor -k %d -f \"mydiary_%d-%s-%d.txt\"",

key, today.day, today.month, today.year);

diary = popen(buf, "w");

if (! diary)

/* something about the command failed, give up */

return;

Page 1 of 6

fprintf(diary, text);

pclose(diary);

}

Unfortunately, Alice developed the code in a rush, and did not write secure or robust
code. One problem concerns her computation of the encryption key: it is both easy to
guess, and will sometimes repeat. Ignoring these encryption issues, identify at least 3
security problems with her code. For each problem, describe an example of input that
an attacker could provide (in terms of the arguments in a call to write diary) that
would cause the security problem to occur.

Hint: Familiarize yourself with the workings of popen() and pclose() if they are new
to you. You can read the manual pages for popen() by typing man popen at a shell
prompt on a Unix system.

Problem 2 Frame Pointer Overwrite (20 points)
The C code below has an off-by-one error; the loop in the vuln() function iterates one
more time than it should.

void vuln(char* s)

{

char buffer[256];

int i;

int n = strlen(s);

if (n > 256)

n = 256;

for (i = 0; i <= n; i++)

buffer[i] = s[i];

}

int main(int argc, char* argv[])

{

if (argc < 2)

{

printf("missing args\n");

exit(-1);

}

vuln(argv[1]);

}

Homework 1 Page 2 of 6 CS 161 – SP 11

In Section #0 we discussed the layout of stack, including different types of information
that is stored on the stack during function calls. Different implementations can vary in
the particulars of the stack layout, but for this problem assume a layout that corresponds
to the specific example given in Section.

(a) You will likely find it helpful to sketch the stack for this program. (You do not
have to include the sketch in your writeup.) Can the attacker overwrite the saved
frame pointer (SFP in the Section notes)? Can the attacker overwrite the return
instruction pointer (RIP)? Explain why for each.

(b) Explain how the attacker can exploit the opportunity to overwrite a single byte to
modify the program’s flow of execution.

Hint: Pay close attention to how returning from a function works; popping a return
address from the stack has a dependency on SFP. You may find it helpful to read the
discussion in the Section materials about the modification of registers by the leave and
ret instructions of the x86 instruction set.

Problem 3 Heap Overflow (20 points)
Stack smashing attacks generally work by modifying a program’s control flow because
information regarding control flow is stored in the same way as data. Similarly, heap
overflow vulnerabilities arise because attackers can cause data they supply to be inter-
preted as control flow information.

The slides from Section #0 discuss general approaches to implementing heap-based stor-
age. Review the chunk structure in those materials to understand how it differs for
allocated chunks versus free chunks.

When using heap memory, a program releases a buffer by calling the free function. free
adjusts the pointer passed to it to point to the beginning of the chunk and checks whether
the surrounding chunks are allocated. If they are not, it merges the chunk being freed
with the already free ones into a bigger chunk.1 The merge process involves removing the
free chunks from their bin, then consolidating the chunks, and finally placing the single
new chunk into a bin according to its size. In this problem, we focus on a heap overflow
that can be triggered during the removal of a chunk from its bin, which is implemented
by the unlink macro:

/* P: Chunk being unlinked

* BK: Previous chunk

* FD: Next chunk

1 There are other possibilities for how a system might implement malloc and free. Here we focus on a
concrete implementation approach, namely the one presented in the Section materials.

Homework 1 Page 3 of 6 CS 161 – SP 11

*/

#define unlink(P, BK, FD)

{

BK = P->bk;

FD = P->fd;

FD->bk = BK; /* equivalent to *(P->fd + 12) = P->bk */

BK->fd = FD; /* equivalent to *(P->bk + 8) = P->fd */

}

Consider the following code example along with the corresponding heap layout (where
we allocate zero-length buffers to keep the accompanying diagrams a bit simpler):

char* buf1 = malloc(0); /* empty just to keep the diagrams simple */

char* buf2 = malloc(0);

char* buf3 = malloc(0);

...

gets(buf2);

...

free(buf1);

free(buf2);

In the code, we allocate three zero-sized buffers. The code then copies user input from
standard input into buf2, and finally frees the first two buffers. In the following, the left
figure shows the heap layout before reading the input, and the right figure after having
read the string "123456789012":

prev_size

size

fd

PREV_INUSE

bk

prev_size

size

fd

PREV_INUSE

bk

prev_size

size

fd

PREV_INUSE

bk

buf1

buf2

buf3

prev_size

size

fd

PREV_INUSE

bk

prev_size

size PREV_INUSE

size

fd

bk

buf1

buf2

buf3

34 33 32 31

38 37 36 35

32 31 30 39

\0

Homework 1 Page 4 of 6 CS 161 – SP 11

(a) Describe what happens when free(buf1) is called, and in particular how this
results in corrupting the heap memory.

(b) How can an attacker exploit this vulnerability to inject code? For your analysis,
assume that the second line of the code instead reads:

char* buf2 = malloc(256);

so that it has enough space to hold the injected code.2

Problem 4 Security Principles (20 points)
Identify one or more security principles relevant to each of the following scenarios, giving
a one or two sentence justification for your answer:

(a) You are given the task to code a mail server that will run on the standard SMTP
port 25 on a UNIX system. On UNIX systems, a program must have “root” (super-
user) privileges to run a service on a port less than 1024.

(b) The Windows API enables programmers to control access to process objects by
specifying a security descriptor when calling the CreateProcess function. The
security descriptor is a detailed structure defining who can perform what actions.
In the API, passing a value of NULL means that the process uses the default
security descriptor, which inherits the properties of the creator of the process. Many
programmers indeed use NULL, given its convenience.

(c) BankOBits is a local bank that offers its customers access to a number of conve-
niently located ATMs. Normally, when a customer inserts their ATM card into a
BankOBits ATM, the ATM will contact the BankOBits central server to validate
the ATM card inserted into it and check that the corresponding account has suf-
ficient funds before issuing money. If the server does not respond or the network
connection is down, the BankOBits ATM allows the customer to withdraw up to
$300, keeps a record of the transaction, and uploads that information to the BankO-
Bits server when connectivity comes back. As a result of this design decision, a gang
of criminals steals from the bank by cutting the network connection on BankOBits
ATMs and repeatedly withdrawing $300 from them even though the account does
not have that much money in it.

(d) A kiosk at the SFO airport lets you access the web for a fee. To use the kiosk, you
enter your credit card information at a welcome screen before the kiosk will give you
access to a web browser. However, an observant hacker discovered that if you press
F1 to invoke the “help” screen, the Windows help subsystem pops up a window
with generic help information about the login screen. The help text happens to

2 This extra space would exist between the bk field of chunk #2 and the prev size field of chunk #3.

Homework 1 Page 5 of 6 CS 161 – SP 11

contain a link to an external web site with more help information, and if you click
on that link, the kiosk opens the Internet Explorer web browser to display contents
of the link. At that point, you can change the URL in the Internet Explorer address
bar to gain full access to the web, all without paying.

Problem 5 Reasoning About Code (20 points)
Consider the following C code:

void dectobin(unsigned int decimal, char* binary)

{

char temp[20];

int j = 0;

int k = 0;

while (decimal > 0)

{

temp[j++] = (decimal % 2) + ’0’;

decimal = decimal / 2;

}

while (j >= 0)

binary[k++] = temp[--j];

binary[k - 1] = ’\0’;

}

Is the above code is memory safe? If yes, prove it by writing the precondition and
invariants. If not, describe the modifications required and prove that the modified code
is memory safe.

Problem 6 Feedback (0 points)
The feedback we received from Homework #0 was highly helpful, and further feedback
would be great to have. So, optionally, feel free to include comments about the course,
such as What’s the single thing we could to make the class better?, or What did you
find most difficult or confusing from lectures or the rest of class, and would like to see
explained better?

If you have feedback, create a text file called q6.txt with your comments.

Homework 1 Page 6 of 6 CS 161 – SP 11

